Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 76-79.doi: 10.13475/j.fzxb.20180801704

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Dyeing kinetics of dyeable spandex fiber with acid dye

HAN Hu1, LI Weiting2, WEI Huifang1, WANG Xiaoyan2, SUN Chang2, XU Changhai2()   

  1. 1. Yantai Tayho Advanced Materials Co., Ltd., Yantai, Shandong 264006, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Wuxi, Jiangsu 214122, China
  • Received:2018-08-06 Revised:2019-05-07 Online:2019-08-15 Published:2019-08-16
  • Contact: XU Changhai E-mail:changhai_xu@jiangnan.edu.cn

Abstract:

In order to control the dyeing course of the dyeable spandex fiber with acid dye and optimize the dyeing process, the dyeable spandex fiber was dyed by Acid Orange II. The dyeing kinetics of dyeable spandex fiber was studied by measuring the dyeing rate curve of the dyeable spandex fiber under different dyeing conditions and fitting the curve with the kinetic model. Experiment results show that the dyeable spandex fiber has a higher initial uptake rate and higher dye uptake at a lower pH value, and a rise in temperature results in a higher dyeing rate. The dyeing course of Acid Orange II on the dyeable spandex fiber follows the pseudo-second-order kinetic model. It is proved that the dyeable spandex fiber is dyed with Acid Orange II mainly by electrostatic adsorption.

Key words: dyeable spandex fiber with acid dye, Acid Orange II, dyeing rate, dyeing kinetic, dyeing performance

CLC Number: 

  • TS193.1

Fig.1

Dyeing rate comparison of dyeable spandex fiber and common spandex fiber"

Fig.2

Effect of pH value on dyeing rate of dyeable spandex fiber with acid dye"

Fig.3

Effect of temperature on dyeing rate of dyeable spandex fiber with acid dye"

Fig.4

Fitting of dyeing rate curve of Acid Orange Ⅱ on dyeable spandex fiber with kinetic models. (a) Pseudo-first-order model; (b) Pseudo-second-order model"

Tab. 1

Pseudo-second-order kinetic parameters of Acid Orange II on dyeable spandex fiber"

pH
温度/
拟合方程 R2 Ce/
(mg·g-1)
k2/
(g·(mg·min)-1)
3 50 y=0.056 1x+0.519 1 0.998 7 17.824 3 0.006 1
3 70 y=0.058 9x+0.193 9 0.999 4 16.977 9 0.017 9
5 50 y=0.083 1x+0.801 5 0.992 2 12.033 7 0.008 6
5 70 y=0.095 1x+0.537 7 0.995 8 10.515 2 0.016 8
[1] 高晓红 . 染整加工对氨纶弹力织物弹性的影响[J]. 南通大学学报(自然科学版), 2006,5(4):39-56.
GAO Xiaohong . Analysis of elastic factors of the elastic fabrics with spandex in dyeing and finishing process[J]. Journal of Nantong University (Natural Science Edition), 2006,5(4):39-56.
[2] 朱新生, 程嘉棋, 徐彤 , 等. 氨纶结晶性与回弹性能的关系[J]. 合成纤维, 2005,8(8):17-21.
ZHU Xinsheng, CHENG Jiaqi, XU Tong , et al. Relationship between crystallization and resilience of polyurethane fibers[J]. Synthetic Fiber in China, 2005,8(8):17-21.
[3] 钱红飞, 宋心远 . 用于氨纶的分散染料染色性能研究[J]. 染料工业, 2000,37(2):1-3.
QIAN Hongfei, SONG Xinyuan . Study on dyeing behaviors of PU fiber with disperse dyes[J]. Dyestuff Industry, 2000,37(2):1-3.
[4] 车江宁, 袁琴华, 权力强 . 分散染料氨纶染色机理的探讨[J]. 中国纺织大学学报, 2000,26(3):32-34, 43.
CHE Jiangning, YUAN Qinhua, QUAN Liqiang . Insight to dyeing mechanism of polyurethane fiber with disperse dyes[J]. Journal of China Textile University, 2000,26(3):32-34, 43.
[5] 钱红飞, 宋心远 . 氨纶分散染料低温染色的研究[J]. 纺织学报, 2004,25(1):53-55.
QIAN Hongfei, SONG Xinyuan . Study on low-temperature dyeing of PU fiber with disperse dyes[J]. Journal of Textile Research, 2004,25(1):53-55.
[6] 游革新, 陈曦日, 杨波 , 等. 染色工艺对氨纶结构与性能的影响[J]. 工程塑料应用, 2017,45(5):45-49, 90.
YOU Gexin, CHEN Xiri, YANG Bo , et al. Influences of dyeing process on structure and properties of polyurethane[J]. Engineering Plastics Application, 2017,45(5):45-49, 90.
[7] 杜鹃, 王惠珍, 唐人成 , 等. 中性和弱酸性染料染色氨纶的性能和工艺[J]. 丝绸, 2001(11):12-15.
DU Juan, WANG Huizhen, TANG Rencheng , et al. Dyeing of spandex with neutral and weak acid dyes[J]. Journal of Silk, 2001(11):12-15.
[8] LEE S K, LEE H Y, KIM S D . Dyeing properties of mixture of ultrafine nylon and polyurethane with different types of dye[J]. Fibers and Polymers, 2013,14(12):2020-2026.
doi: 10.1007/s12221-013-2020-4
[9] 邵晓林, 毛植森, 许图远 , 等. 氨纶及其织物染色性能的研究进展[J]. 合成纤维, 2015,44(1):22-26.
SHAO Xiaolin, MAO Zhisen, XU Tuyuan , et al. Research progress in dyeing properties of spandex and blended fabric[J]. Synthetic Fiber in China, 2015,44(1):22-26.
[10] 韩虎, 梁国东, 林荣 , 等. 一种聚醚型易染氨纶的制备方法: 101096779[P]. 2008-01-02.
HAN Hu, LIANG Guodong, LIN Rong , et al. A preparation method of polyether easy-to-dye spandex fiber: 101096779[P]. 2008-01-02.
[11] QIU Hui, LV Lu, PAN Bingcai . Critical review in adsorption kinetic models[J]. Journal of Zhejiang University: Science A, 2009,10(5):716-724.
doi: 10.1631/jzus.A0820524
[1] . Thermal and dyeing properties of novel cationic-dyeable polyester fabrics under atmospheric pressure [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 71-75.
[2] . Influence of nano silver loading on dyeing property of cotton fabrec [J]. Journal of Textile Research, 2015, 36(07): 61-65.
[3] . Study on acid dyestuff dyeing kinetics of polyamide 56 fiber compared with polyamide 6 and 66 [J]. Journal of Textile Research, 2015, 36(02): 77-80.
[4] wei-dong ZHANG. Infouence of acrylic acid grafting on dyeing property of nylon 66 [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 85-89.
[5] . Mechanism of Benzyl Alcohol on Acrylic Fiber Dyeing with Cationic Dye [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(5): 80-85.
[6] DING Feifei;WANG Lan;LIN Junxiong. Dyeing mechanism of disperse dye on bi-component sheath-core fiber with low melting point [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(1): 67-72.
[7] YIN Yunjie;WANG Chaoxia. Dyeing performance of silica sol hybridized with Direct Red 4BS [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(6): 85-89.
[8] ZHANG Nanzhe;LUI Yuexian. Dyeing performance of anti-ultraviolet cotton fabric treated with nano TiO2 [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(5): 80-85.
[9] ZHOU Xiren . Dyeing rate′s curve fitting based on MatLab [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(11): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XING Ming-jie;TANG Dian-hua;YU Chong-wen . Effect of three technologic parameters on air-jet spun yarn strength[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 49 -51 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(04): 24 -25 .
[3] YANG Ju-ping. Cross-linking flocculants of high molecule and high concentration[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 63 -64 .
[4] ZHU Zhi-feng;QIAO Zhi-yong. Causes and elimination of the foams within sizing pastes[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(7): 86 -89 .
[5] LIN Jian-long;WANG Xiao-bei;GU Xiang. Analysis and design of new model thread-taking-up mechanism of the computerized embroidery machine[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(12): 105 -108 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(02): 19 -22 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(02): 46 -48 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 1993, 14(03): 19 -21 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 1987, 8(02): 55 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1986, 7(06): 11 -16 .