Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (02): 173-180.doi: 10.13475/j.fzxb.20180801808
• Comprehensive Review • Previous Articles
CHEN Yue, ZHAO Yonghuan, CHU Zhudan, ZHUANG Zhishan, QIU Linlin, DU Pingfan()
CLC Number:
[1] | LI D, WANG D, RUI K, et al. Flexible phosphorus doped carbon nanosheets/nanofibers: electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries[J]. Journal of Power Sources, 2018,384:27-33. |
[2] | DUSASTRE V, TARASCON J M, MICHAEL Grätzel, et al. Materials for Sustainable Energy: a Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group[M]. UK: Co-Published with Macmillan Publishers Ltd, 2010: 171-179. |
[3] |
ZHU J, SAKAUSHI K, CLACEL G, et al. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting[J]. Journal of the American Chemical Society, 2015,137(16):5480-5485.
doi: 10.1021/jacs.5b01072 pmid: 25851622 |
[4] |
LIU T, FINN L, YU M, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Letters, 2014,14(5):2522-2527.
doi: 10.1021/nl500255v pmid: 24678990 |
[5] |
WANG G, WANG H, LU X, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced Materials, 2014,26(17):2676-2682.
pmid: 24496722 |
[6] | HE Y H, MATTHEWS B, WANG J Y, et al. Innovation and challenges in materials design for flexible rechargeable batteries: from 1D to 3D[J]. Journal of Materials Chemistry A, 2018,6(3), 735-753. |
[7] | 闻雷, 陈静, 罗洪泽, 等. 石墨烯在柔性锂离子电池中的应用及前景[J]. 科学通报, 2015,60(7):630-644. |
WEN Lei, CHEN Jing, LUO Hongze, et al. Graphene for flexible lithium-ion batteries: applications and prospects[J]. Chinese Science Bulletin, 2015,60(7):630-644. | |
[8] | LI J Q, JING M X, HAN C, et al. A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery[J]. Applied Physics A, 2018,124(4):332-339. |
[9] |
LIU S, WANG Z, YU C, et al. A flexible TiO2(β)-based battery electrode with superior power rate and ultralong cycle life[J]. Advanced Materials, 2013,25(25):3462-3467.
doi: 10.1002/adma.201300953 pmid: 23696317 |
[10] | ZHANG B, YU Y, HUANG Z, et al. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles[J]. Energy & Environmental Science, 2012,5(12):9895-9902. |
[11] | LEE G H, MOON S H, KIM M C, et al. Molybdenum carbide embedded in carbon nanofiber as a 3D flexible anode with superior stability and high-rate performance for Li-ion batteries[J]. Ceramics International, 2018,44(7):7972-7977. |
[12] | WANG F, LI C, ZHONG J, et al. A flexible core-shell carbon layer MnO nanofiber thin film via host-guest interaction: construction, characterization, and electrochemical performances[J]. Carbon, 2017,128:277-286. |
[13] | LI Z, TANG B H. Mn3O4/nitrogen-doped porous carbon fiber hybrids involving multiple covalent interactions and open voids as flexible anodes for lithium-ion batteries[J]. Green Chemistry, 2017,19(24):5862-5873. |
[14] | 管纪鹏. 静电纺丝法制备柔性锂离子电池负极材料及其性能研究[D]. 杭州:杭州师范大学, 2015: 71-72. |
GUAN Jipeng. Fabrication of flexible anode materials for flexible lithium-ion battery via electrospinning[D]. Hangzhou: Hangzhou Normal University, 2015: 71-72. | |
[15] | SHEN L, DING B, NIE P, et al. Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles[J]. Advanced Energy Materials, 2013,3(11):1484-1489. |
[16] | LUO Y, LUO J, JIANG J, et al. Seed-assisted synjournal of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications[J]. Energy & Environmental Science, 2012,5(4):6559-6566. |
[17] | JIANG C, DING W, WU H, et al. Hierarchical Li4Ti5O12 nanosheet arrays anchoring on carbon fiber cloth as ultra-stable free-standing anode of Li-ion battery[J]. Ceramics International, 2017,44(3):3040-3047. |
[18] | SHEN L, CHE Q, LI H, et al. Metal oxides: mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder‐free flexible electrodes for energy storage[J]. Advanced Functional Materials, 2014,24(18):2736-2736. |
[19] | LIU B, WANG X F, LIU B Y, et al. Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes[J]. Nano Research, 2013,6(7):525-534. |
[20] | LI W, WANG X, LIU B, et al. Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes.[J]. Chemistry-A European Journal, 2013,19(26):8650-8656. |
[21] | 王健波. CO3O4纳米线/碳布柔性电池负极的制备及其电化学性能[D]. 哈尔滨:哈尔滨工业大学, 2013: 3-4. |
WANG Jianbo. Preparation and electrochemical performance of CO3O4 nanowire/carbon fabric flexible battery anode[D]. Harbin: Harbin Institute of Technology, 2013: 3-4. | |
[22] | BALOGUN M S, WU Z, LUO Y, et al. High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries[J]. Journal of Power Sources, 2016,308:7-17. |
[23] |
GAO Z, SONG N N, ZHANG Y Y, et al. Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan[J]. Nano Letters, 2015,15(12):8194-8203.
doi: 10.1021/acs.nanolett.5b03698 pmid: 26588035 |
[24] | DENG Z, JIANG H, HU Y, et al. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries[J]. Advanced Materials, 2017,29(10):20-26. |
[25] | LIU B, WANG X, CHEN H, et al. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries.[J]. Scientific Reports, 2013,3(15):1622-1628. |
[26] | CHENG S, SHI T, TAO X, et al. In-situ oxidized copper-based hybrid film on carbon cloth as flexible anode for high performance lithium-ion batteries[J]. Electrochimica Acta, 2016,212:492-499. |
[27] | JOSHI B, SAMUEL E, KIM M W, et al. Atomic-layer-deposited TiO2-SnZnO/carbon nanofiber composite as highly stable, flexible and freestanding anode material for lithium-ion batteries[J]. Chemical Engineering Journal, 2018(338):72-81. |
[28] | BALOGUN M S, QIU W, LYU F, et al. All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode[J]. Nano Energy, 2016,26:446-455. |
[29] | Du Y, Tang Y, Chang C. Hollow carbon cloth enhances the performance of red phosphorus for flexible lithium ion battery[J]. Journal of the Electrochemical Society, 2016,163(14):2938-2942. |
[30] | 刘冠伟, 张亦弛, 慈松, 等. 柔性电化学储能器件研究进展[J]. 储能科学与技术, 2017,6(1):52-68. |
LIU Guanwei, ZHANG Yichi, CI Song, et al. Research progress on flexible electrochemical energy storage devices[J]. Energy Storage Science and Technology, 2017,6(1):52-68. | |
[31] | 闻雷, 梁骥, 石颖, 等. 柔性锂硫电池的材料设计与实现[J]. 储能科学与技术, 2018,3(7):465-470. |
WEN Lei, LIANG Ji, SHI Ying, et al. Materials design and its implementation for flexible Li-S batteries[J]. Energy Storage Science and Technology, 2018,3(7):465-470. | |
[32] | CAO Z, WANG C, CHEN J. Novel mesoporous carbon nanofibers prepared via electrospinning method as host materials for Li-S battery[J]. Materials Letters, 2018,225:157-160. |
[33] | ZHAO X, KIM M, LIU Y, et al. Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries[J]. Carbon, 2018,128:138-146. |
[34] | KANG W, FAN L, DENG N, et al. Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries[J]. Chemical Engineering Journal, 2018,333:185-190. |
[35] |
CAITLIN D, SHENG-HENG C, ARVINDER S, et al. Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium, sulfur batteries[J]. Materials Today Energy, 2018,9:336-344.
doi: 10.1016/j.mtener.2018.06.004 |
[36] | WANG X, BI X, WANG S, et al. High-rate and long-term cycle stability of Li-S batteries enabled by Li2S/TiO2-impregnated hollow carbon nanofiber cathodes[J]. ACS applied materials & interfaces, 2018,10(19):16552-16560. |
[37] |
CHUNG S H, CHANG C H, MANTHIARM A. A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries[J]. ACS Nano, 2016,10(11):10462-10470.
doi: 10.1021/acsnano.6b06369 pmid: 27783490 |
[38] | REN W, MA W, UMAIR M M, et al. CoO/Co-activated porous carbon cloth cathode for high performance Li-S batteries[J]. Chem Sus Chem, 2018,11(16):2695-2702. |
[39] |
GAO P, XU S, CHEN Z, et al. Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li-S batteries[J]. ACS Applied Materials & Interfaces, 2018,10(4):3938-3947.
doi: 10.1021/acsami.7b16174 pmid: 29309733 |
[40] |
ELAZARI R, SALITRA G, GARSUCH A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011,23(47):5641-5644.
doi: 10.1002/adma.201103274 pmid: 22052740 |
[41] | HAN X, XU Y, CHEN X, et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3, in nanoporous carbon cloth[J]. Nano Energy, 2013,2(6):1197-1206. |
[42] | ZHONG Y, CHAO D, DENG S, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1706391. |
[43] |
ZHEANG G, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011,11(10):4462-4467.
doi: 10.1021/nl2027684 pmid: 21916442 |
[1] | SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33. |
[2] | DAI Xin, LI Jing, CHEN Chen. Finite element simulation on wear resistance of copper-plated carbon fiber tows [J]. Journal of Textile Research, 2020, 41(06): 27-35. |
[3] | LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173. |
[4] | LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57. |
[5] | ZHAO Yaqi, GUO Wenjing, DU Lingzhi, ZHAO Zhenxin, ZHAO Haipeng. Research progress of high relative molecular weight polyacrylonitrile prepared by radical initiators [J]. Journal of Textile Research, 2020, 41(04): 174-180. |
[6] | WANG Xianghua, CHENG Ling, ZHANG Yifan, PENG Haifeng, HUANG Zhiwen, LIU Xiaozhi. Structural design and finite element analysis of landing gear with leaf spring made of 3-D woven composite [J]. Journal of Textile Research, 2020, 41(03): 68-77. |
[7] | LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14. |
[8] | ZHAO Yinghui, GU Yingchun, HU Fei, LIN Jiayou, YE Lanlin, LI Jingjing, CHEN Sheng. Progress review on research of aromatic polyamide nanofiber composites [J]. Journal of Textile Research, 2020, 41(01): 184-189. |
[9] | DONG Ke, LI Siming, WU Guanzheng, HUANG Hongrong, LIN Zhongshi, XIAO Xueliang. Preparation and properties of carbon fiber / polyester electrocardiogram monitoring embroidery electrode [J]. Journal of Textile Research, 2020, 41(01): 56-62. |
[10] | ZHANG Ze, XU Weijun, KANG Hongliang, XU Jian, LIU Ruigang. Thoughts on preparation technology of high performance polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2019, 40(12): 152-161. |
[11] | RUAN Fangtao, SHI Jian, XU Zhenzhen, XING Jian. Research progress in recycling and reuse of carbon fiber reinforced resin composites [J]. Journal of Textile Research, 2019, 40(06): 152-157. |
[12] | ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43. |
[13] | YANG Jing, LIU Yanjun. Preparation and properties of graphene-knitted electrode materials [J]. Journal of Textile Research, 2019, 40(03): 90-95. |
[14] | YE Wei, SUN Lei, YU Jin, SUN Qilong. Preparation and microwave absorption property of flexible lightweight magnetic particles-carbon fiber composites [J]. Journal of Textile Research, 2019, 40(01): 97-102. |
[15] | . Research progress of wearable technology in textiles and apparels [J]. Journal of Textile Research, 2018, 39(12): 131-138. |
|