Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (02): 173-180.doi: 10.13475/j.fzxb.20180801808

• Comprehensive Review • Previous Articles    

Research progress of flexible lithium battery electrodes based on carbon fibers and their fabrics

CHEN Yue, ZHAO Yonghuan, CHU Zhudan, ZHUANG Zhishan, QIU Linlin, DU Pingfan()   

  1. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-08-06 Revised:2018-12-18 Online:2019-02-15 Published:2019-02-01
  • Contact: DU Pingfan E-mail:dupf@zstu.edu.cn

Abstract:

With the rapid development of wearable technology, the demand for flexible lithium batteries is increasing. The combination of active electrode materials with excellent electrochemical properties and flexible nano-carbon-based materials is a hot research direction for the preparation of high-performance flexible lithium battery electrodes. In this paper, the research and application of carbon fiber and fabric in flexible electrode materials of lithium ion and lithium sulfur battery were reviewed. The different methods and progress of preparing flexible composite electrode materials are summarized, including electrospinning technology, hydrothermal method, heat treatment, coating, magnetron sputtering, atomic layer deposition and thermal etching. All of the obtained electrode materials show excellent performance in some aspects, such as high reversible capacity, excellent cycle performance, and enhanced mechanical strength, etc. Finally, the prospect of the development of flexible lithium battery electrodes based on carbon fiber and fabric was put forward.

Key words: flexible lithium battery, electrode material, carbon fiber, carbon fiber fabric, wearable technology

CLC Number: 

  • TS176.5

Fig.1

Schematic diagram the fabrication of MnO/CNFs composite film"

Fig.2

Schematic illustration of synthesis of HPCNF cloth from pyrolyzing electrospun membrane of PVP/P123/TEOS and preparation of flexible S/HPCNF composite as binder-free cathode for lithium sulfur (Li-S) batteries"

[1] LI D, WANG D, RUI K, et al. Flexible phosphorus doped carbon nanosheets/nanofibers: electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries[J]. Journal of Power Sources, 2018,384:27-33.
[2] DUSASTRE V, TARASCON J M, MICHAEL Grätzel, et al. Materials for Sustainable Energy: a Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group[M]. UK: Co-Published with Macmillan Publishers Ltd, 2010: 171-179.
[3] ZHU J, SAKAUSHI K, CLACEL G, et al. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting[J]. Journal of the American Chemical Society, 2015,137(16):5480-5485.
doi: 10.1021/jacs.5b01072 pmid: 25851622
[4] LIU T, FINN L, YU M, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Letters, 2014,14(5):2522-2527.
doi: 10.1021/nl500255v pmid: 24678990
[5] WANG G, WANG H, LU X, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced Materials, 2014,26(17):2676-2682.
pmid: 24496722
[6] HE Y H, MATTHEWS B, WANG J Y, et al. Innovation and challenges in materials design for flexible rechargeable batteries: from 1D to 3D[J]. Journal of Materials Chemistry A, 2018,6(3), 735-753.
[7] 闻雷, 陈静, 罗洪泽, 等. 石墨烯在柔性锂离子电池中的应用及前景[J]. 科学通报, 2015,60(7):630-644.
WEN Lei, CHEN Jing, LUO Hongze, et al. Graphene for flexible lithium-ion batteries: applications and prospects[J]. Chinese Science Bulletin, 2015,60(7):630-644.
[8] LI J Q, JING M X, HAN C, et al. A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery[J]. Applied Physics A, 2018,124(4):332-339.
[9] LIU S, WANG Z, YU C, et al. A flexible TiO2(β)-based battery electrode with superior power rate and ultralong cycle life[J]. Advanced Materials, 2013,25(25):3462-3467.
doi: 10.1002/adma.201300953 pmid: 23696317
[10] ZHANG B, YU Y, HUANG Z, et al. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles[J]. Energy & Environmental Science, 2012,5(12):9895-9902.
[11] LEE G H, MOON S H, KIM M C, et al. Molybdenum carbide embedded in carbon nanofiber as a 3D flexible anode with superior stability and high-rate performance for Li-ion batteries[J]. Ceramics International, 2018,44(7):7972-7977.
[12] WANG F, LI C, ZHONG J, et al. A flexible core-shell carbon layer MnO nanofiber thin film via host-guest interaction: construction, characterization, and electrochemical performances[J]. Carbon, 2017,128:277-286.
[13] LI Z, TANG B H. Mn3O4/nitrogen-doped porous carbon fiber hybrids involving multiple covalent interactions and open voids as flexible anodes for lithium-ion batteries[J]. Green Chemistry, 2017,19(24):5862-5873.
[14] 管纪鹏. 静电纺丝法制备柔性锂离子电池负极材料及其性能研究[D]. 杭州:杭州师范大学, 2015: 71-72.
GUAN Jipeng. Fabrication of flexible anode materials for flexible lithium-ion battery via electrospinning[D]. Hangzhou: Hangzhou Normal University, 2015: 71-72.
[15] SHEN L, DING B, NIE P, et al. Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles[J]. Advanced Energy Materials, 2013,3(11):1484-1489.
[16] LUO Y, LUO J, JIANG J, et al. Seed-assisted synjournal of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications[J]. Energy & Environmental Science, 2012,5(4):6559-6566.
[17] JIANG C, DING W, WU H, et al. Hierarchical Li4Ti5O12 nanosheet arrays anchoring on carbon fiber cloth as ultra-stable free-standing anode of Li-ion battery[J]. Ceramics International, 2017,44(3):3040-3047.
[18] SHEN L, CHE Q, LI H, et al. Metal oxides: mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder‐free flexible electrodes for energy storage[J]. Advanced Functional Materials, 2014,24(18):2736-2736.
[19] LIU B, WANG X F, LIU B Y, et al. Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes[J]. Nano Research, 2013,6(7):525-534.
[20] LI W, WANG X, LIU B, et al. Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes.[J]. Chemistry-A European Journal, 2013,19(26):8650-8656.
[21] 王健波. CO3O4纳米线/碳布柔性电池负极的制备及其电化学性能[D]. 哈尔滨:哈尔滨工业大学, 2013: 3-4.
WANG Jianbo. Preparation and electrochemical performance of CO3O4 nanowire/carbon fabric flexible battery anode[D]. Harbin: Harbin Institute of Technology, 2013: 3-4.
[22] BALOGUN M S, WU Z, LUO Y, et al. High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries[J]. Journal of Power Sources, 2016,308:7-17.
[23] GAO Z, SONG N N, ZHANG Y Y, et al. Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan[J]. Nano Letters, 2015,15(12):8194-8203.
doi: 10.1021/acs.nanolett.5b03698 pmid: 26588035
[24] DENG Z, JIANG H, HU Y, et al. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries[J]. Advanced Materials, 2017,29(10):20-26.
[25] LIU B, WANG X, CHEN H, et al. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries.[J]. Scientific Reports, 2013,3(15):1622-1628.
[26] CHENG S, SHI T, TAO X, et al. In-situ oxidized copper-based hybrid film on carbon cloth as flexible anode for high performance lithium-ion batteries[J]. Electrochimica Acta, 2016,212:492-499.
[27] JOSHI B, SAMUEL E, KIM M W, et al. Atomic-layer-deposited TiO2-SnZnO/carbon nanofiber composite as highly stable, flexible and freestanding anode material for lithium-ion batteries[J]. Chemical Engineering Journal, 2018(338):72-81.
[28] BALOGUN M S, QIU W, LYU F, et al. All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode[J]. Nano Energy, 2016,26:446-455.
[29] Du Y, Tang Y, Chang C. Hollow carbon cloth enhances the performance of red phosphorus for flexible lithium ion battery[J]. Journal of the Electrochemical Society, 2016,163(14):2938-2942.
[30] 刘冠伟, 张亦弛, 慈松, 等. 柔性电化学储能器件研究进展[J]. 储能科学与技术, 2017,6(1):52-68.
LIU Guanwei, ZHANG Yichi, CI Song, et al. Research progress on flexible electrochemical energy storage devices[J]. Energy Storage Science and Technology, 2017,6(1):52-68.
[31] 闻雷, 梁骥, 石颖, 等. 柔性锂硫电池的材料设计与实现[J]. 储能科学与技术, 2018,3(7):465-470.
WEN Lei, LIANG Ji, SHI Ying, et al. Materials design and its implementation for flexible Li-S batteries[J]. Energy Storage Science and Technology, 2018,3(7):465-470.
[32] CAO Z, WANG C, CHEN J. Novel mesoporous carbon nanofibers prepared via electrospinning method as host materials for Li-S battery[J]. Materials Letters, 2018,225:157-160.
[33] ZHAO X, KIM M, LIU Y, et al. Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries[J]. Carbon, 2018,128:138-146.
[34] KANG W, FAN L, DENG N, et al. Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries[J]. Chemical Engineering Journal, 2018,333:185-190.
[35] CAITLIN D, SHENG-HENG C, ARVINDER S, et al. Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium, sulfur batteries[J]. Materials Today Energy, 2018,9:336-344.
doi: 10.1016/j.mtener.2018.06.004
[36] WANG X, BI X, WANG S, et al. High-rate and long-term cycle stability of Li-S batteries enabled by Li2S/TiO2-impregnated hollow carbon nanofiber cathodes[J]. ACS applied materials & interfaces, 2018,10(19):16552-16560.
[37] CHUNG S H, CHANG C H, MANTHIARM A. A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries[J]. ACS Nano, 2016,10(11):10462-10470.
doi: 10.1021/acsnano.6b06369 pmid: 27783490
[38] REN W, MA W, UMAIR M M, et al. CoO/Co-activated porous carbon cloth cathode for high performance Li-S batteries[J]. Chem Sus Chem, 2018,11(16):2695-2702.
[39] GAO P, XU S, CHEN Z, et al. Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li-S batteries[J]. ACS Applied Materials & Interfaces, 2018,10(4):3938-3947.
doi: 10.1021/acsami.7b16174 pmid: 29309733
[40] ELAZARI R, SALITRA G, GARSUCH A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011,23(47):5641-5644.
doi: 10.1002/adma.201103274 pmid: 22052740
[41] HAN X, XU Y, CHEN X, et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3, in nanoporous carbon cloth[J]. Nano Energy, 2013,2(6):1197-1206.
[42] ZHONG Y, CHAO D, DENG S, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1706391.
[43] ZHEANG G, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011,11(10):4462-4467.
doi: 10.1021/nl2027684 pmid: 21916442
[1] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[2] DAI Xin, LI Jing, CHEN Chen. Finite element simulation on wear resistance of copper-plated carbon fiber tows [J]. Journal of Textile Research, 2020, 41(06): 27-35.
[3] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[4] LU Hao, CHEN Yuan. Surface defect detection method of carbon fiber prepreg based on machine vision [J]. Journal of Textile Research, 2020, 41(04): 51-57.
[5] ZHAO Yaqi, GUO Wenjing, DU Lingzhi, ZHAO Zhenxin, ZHAO Haipeng. Research progress of high relative molecular weight polyacrylonitrile prepared by radical initiators [J]. Journal of Textile Research, 2020, 41(04): 174-180.
[6] WANG Xianghua, CHENG Ling, ZHANG Yifan, PENG Haifeng, HUANG Zhiwen, LIU Xiaozhi. Structural design and finite element analysis of landing gear with leaf spring made of 3-D woven composite [J]. Journal of Textile Research, 2020, 41(03): 68-77.
[7] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
[8] ZHAO Yinghui, GU Yingchun, HU Fei, LIN Jiayou, YE Lanlin, LI Jingjing, CHEN Sheng. Progress review on research of aromatic polyamide nanofiber composites [J]. Journal of Textile Research, 2020, 41(01): 184-189.
[9] DONG Ke, LI Siming, WU Guanzheng, HUANG Hongrong, LIN Zhongshi, XIAO Xueliang. Preparation and properties of carbon fiber / polyester electrocardiogram monitoring embroidery electrode [J]. Journal of Textile Research, 2020, 41(01): 56-62.
[10] ZHANG Ze, XU Weijun, KANG Hongliang, XU Jian, LIU Ruigang. Thoughts on preparation technology of high performance polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2019, 40(12): 152-161.
[11] RUAN Fangtao, SHI Jian, XU Zhenzhen, XING Jian. Research progress in recycling and reuse of carbon fiber reinforced resin composites [J]. Journal of Textile Research, 2019, 40(06): 152-157.
[12] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[13] YANG Jing, LIU Yanjun. Preparation and properties of graphene-knitted electrode materials [J]. Journal of Textile Research, 2019, 40(03): 90-95.
[14] YE Wei, SUN Lei, YU Jin, SUN Qilong. Preparation and microwave absorption property of flexible lightweight magnetic particles-carbon fiber composites [J]. Journal of Textile Research, 2019, 40(01): 97-102.
[15] . Research progress of wearable technology in textiles and apparels [J]. Journal of Textile Research, 2018, 39(12): 131-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!