Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 1-6.doi: 10.13475/j.fzxb.20180803306

• Fiber Materials •     Next Articles

Preparation and properties of polyvinylidene fluoride photothermal nanofiber membrane

GAO Shangpeng1,2, HUANG Qinglin1,2(), DAI Wei1,2, XIAO Changfa1   

  1. 1. State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Polytechnic University,Tianjin 300387, China
    2. School of Material Science and Engineering,Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-08-13 Revised:2019-04-30 Online:2019-08-15 Published:2019-08-16
  • Contact: HUANG Qinglin E-mail:huangqinglin@tjpu.edu.cn

Abstract:

In order to solve the problem of the decrease in the membrane permeate flux caused by temperature polarization in the process of vacuum membrane distillation (VMD), polyvinylidene fluoride (PVDF) was used as a membrane-forming polymer, and functional antimony doped tin oxide (ATO) with the infrared-induced thermal effect was introduced. PVDF/ATO nanofiber membranes were prepared by electrospinning and then subjected to heat pressing treatment to optimize the fiber structure and pore size. Then, the influences of ATO addition and heat pressing temperature on the morphologies and properties of the membranes were investigated. The results show that the PVDF/ATO nanofiber membrane has better physical properties after heat pressing treatment at 170 ℃. When the ATO addition amount is 3%, the surface temperature of the PVDF/ATO nanofiber membrane increases by 40 ℃ after infrared irradiation for 120 s, the permeate flux of VMD increases from 12 L/(m 2·h) to 22 L/(m 2·h), and the salt rejection remains above 99% during the operation for 5 h.

Key words: electrospinning, polyvinylidene fluoride/antimony doped tin oxide nanofiber membrane, heat pressing treatment, temperature polarization, membrane distillation performance

CLC Number: 

  • TQ340.47

Fig.1

Experimental apparatus for vacuum membrane distillation"

Fig.2

SEM images of electrospun PVDF membrane under different heat press temperatures. (a) Untreated membrane surface;(b) Untreated membrane cross section; (c) 160 ℃ heat press surface;(d) 160 ℃ heat press cross section;(e) 170 ℃ heat press surface; (f) 170 ℃ heat press cross section; (g) 180 ℃ heat press surface; (h) 180 ℃ heat press cross section"

Tab.1

Performance of PVDF membranes under different heat press temperatures"

热压处理
温度/℃
厚度/
μm
孔隙率/
%
接触角/
(°)
断裂强度/
MPa
未处理 158 83.3 134.3±2.1 5.32±1.17
160 96 66.5 133.7±2.3 8.56±1.50
170 77 57.8 134.0±1.8 9.09±1.22
180 56 10.3 108.7±2.7 13.6±1.32

Fig.3

SEM images of PVDF/ATO nanofiber membrane"

Tab.2

Performance of PVDF/ATO membranes"

纤维膜 接触角/
(°)
孔隙率/
%
液体渗透压/
MPa
断裂强度/
MPa
M-0 133.5±1.1 57.8 0.15±0.02 9.09±1.22
M-1 132.1±0.9 63.2 0.16±0.01 8.62±0.86
M-3 129.8±1.5 62.6 0.17±0.02 8.07±1.34
M-5 127.4±2.1 61.2 0.15±0.03 6.94±1.04

Fig.4

Effect of infrared irradiation on PVDF/ATO membrane surface temperature"

Fig.5

Optical absorption of PVDF/ATO membrane"

Fig.6

Permeate flux and rejection of PVDF/ATO fiber membrane"

[1] DRIOLI E, ALI A, MACEDONIO F . Membrane distillation: recent developments and perspectives[J]. Desalination, 2015,356(2):56-84.
doi: 10.1016/j.desal.2014.10.028
[2] 郑涛杰, 陈志莉, 杨毅 . 膜蒸馏技术应用于海水淡化的技术分析与研究进展[J]. 重庆大学学报(自然科学版), 2017,40(12):71-78.
ZHENG Taojie, CHEN Zhili, YANG Yi . A review and technical analysis about membrane distillation for desalination[J]. Journal of Chongqing Univer-sity(Natural Science Edition), 2017,40(12):71-78.
[3] SHIRAZI M M A, KARGARI A, SHIRAZI M J A . Direct contact membrane distillation for seawater desalination[J]. Desalination & Water Treatment, 2012,49(1-3):368-375.
[4] 孙楠, 李剑锋, 郭淑娟 , 等. 膜蒸馏在废水处理中的研究现状与进展[J]. 工业用水与废水, 2018,49(1):7-11.
SUN Nan, LI Jianfeng, GUO Shujuan , et al. Research status and progress of membrane distillation applied to wastewater treatment[J]. Industrial Water & Wastewater, 2018,49(1):7-11.
[5] CIPOLLINA A . Assessment of temperature polarization in membrane distillation channels by liquid crystal thermography[J]. Desalination & Water Treatment, 2014,6(10):7107-7120.
[6] ALSAADI A S, FRANCIS L, AMY G L . Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation[J]. Journal of Membrane Science, 2014,471(6):138-148.
doi: 10.1016/j.memsci.2014.08.005
[7] TAMBURINI A, PITO P, CIPOLLINA A . A thermochromic liquid crysts image analysis technique to investigate temperature polarization in spacer-filled channels for membrane distillation[J]. Journal of Membrane Science, 2013,447(22):260-273.
doi: 10.1016/j.memsci.2013.06.043
[8] SANTORO S, VIDORRETA I M, SEBASTIAN V , et al. A non-invasive optical method for mapping temperature polarization in direct contact membrane distillation[J]. Journal of Membrane Science, 2017,536(1):156-166.
doi: 10.1016/j.memsci.2017.05.001
[9] POLITANO A, ARGURIO P, DI P G , et al. Photothermal membrane distillation for seawater desalination[J]. Advanced Materials, 2017,29(2):1-6.
[10] SHIEH Y N, HSIEH P C, CHEN C J . Fabrication of antimony doped tin oxide (ATO) films for heat insulated glass coating[J]. Advanced Materials Research, 2010, 168-170:1670-1674.
doi: 10.4028/www.scientific.net/AMR.168-170
[11] ZHU Y, YIN M, LIU H , et al. Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes[J]. Composites Part B: Engineering, 2017,112:31-37.
doi: 10.1016/j.compositesb.2016.12.025
[12] ASLAN T, ARSLAN S, EYVAZ M , et al. A novel nanofiber microfiltration membrane: fabrication and characterization of tubular electrospun nanofiber (TuEN) membrane[J]. Journal of Membrane Science, 2016,520:616-629.
doi: 10.1016/j.memsci.2016.08.014
[13] MATSUYAMA H, TERAMOTO M, KUDARI S , et al. Effect of diluents on membrane formation via thermally induced phase separation[J]. Journal of Applied Polymer Science, 2001,82(1):169-177.
doi: 10.1002/(ISSN)1097-4628
[14] LIAO Y, WANG R, TIAN M , et al. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation[J]. Journal of Membrane Science, 2013, 425-426(1):30-39.
doi: 10.1016/j.memsci.2012.09.023
[15] 张博亚, 李佳慧, 张如全 , 等. 静电纺聚丙烯腈/硫酸铜纳米纤维膜的制备及其性能[J]. 纺织学报, 2018,39(7):15-20.
ZHANG Boya, LI Jiahui, ZHANG Ruquan , et al. Preparation and properties of electrospun polyacrylonitrile/copper sulfate nanofiber membrane[J]. Journal of Textile Research, 2018,39(7):15-20.
doi: 10.1177/004051756903900103
[16] 覃小红, 王善元 . 纺丝液的导电性对静电纺丝单根纤维的直径及稳定长度的影响[J]. 东华大学学报(自然科学版), 2007,33(2):270-273.
QIN Xiaohong, WANG Shanyuan . Effect of conductance solution on diameter vs axial coordinate and stable length of one single nanofibers in electrospining[J]. Journal of Donghua University(Natural Science Edition), 2007,33(2):270-273.
[1] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[2] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[3] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[4] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[5] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[6] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[7] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[8] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester / sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[9] WU Heng, JIN Xin, WANG Wenyu, ZHU Zhengtao, LIN Tong, NIU Jiarong. Preparation and piezoelectric properties of polyacrylonitrile / sodium nitrate nanofiber membrane [J]. Journal of Textile Research, 2020, 41(03): 26-32.
[10] LI Guoqing, LI Pingping, LIU Hanlin, LI Ni. Preparation and properties of polyacrylonitrile / polyurethane transparent film [J]. Journal of Textile Research, 2020, 41(03): 20-25.
[11] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[12] LIU Yujian, TAN Jing, CHEN Mingjun, YU Shaoyang, LI Haoyi, YANG Weimin. Research progress of electrospun nanofiber yarns [J]. Journal of Textile Research, 2020, 41(02): 165-171.
[13] WANG Jie, WANG Bin, DU Zongxi, LI Congju, LI Xiuyan, AN Boru. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II) [J]. Journal of Textile Research, 2020, 41(01): 1-7.
[14] WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31.
[15] WU Jiajun, QIN Xiaohong. Preparation and characterization of cellulose acetate sub-micro fiber from burley tobacco stalk pulp [J]. Journal of Textile Research, 2019, 40(12): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XING Ming-jie;TANG Dian-hua;YU Chong-wen . Effect of three technologic parameters on air-jet spun yarn strength[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 49 -51 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(04): 24 -25 .
[3] LIN Jian-long;WANG Xiao-bei;GU Xiang. Analysis and design of new model thread-taking-up mechanism of the computerized embroidery machine[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(12): 105 -108 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(02): 19 -22 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(02): 46 -48 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1993, 14(03): 19 -21 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 1986, 7(06): 11 -16 .
[8] SUN Fu~;ZHANG Guoqing~;SUN Yanqiu~. Properties of conducting carbon black/polyester composites[J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 9 -11 .
[9] GUO Xingfeng. Design of annular woven fabric used for composite flywheel winding[J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(7): 52 -54 .
[10] SHI Fengjun;ZHENG Dejun. A modeling approach to recovery properties of woven fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(10): 38 -41 .