Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 14-19.doi: 10.13475/j.fzxb.20180804406

• Fiber Materials •     Next Articles

Preparation and optimization of carboxyl viscose fiber grafted with silkworm chrysalis peptide

YIN Sili1, YANG Yang1, JIANG Wen1, SHI Yexin1, ZHOU Xiaohua1(), HUANG Jinhong2   

  1. 1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
    2. Huimei Tread Industry Co., Ltd., Yibin, Sichuan 644000, China
  • Received:2018-08-15 Revised:2019-04-29 Online:2019-08-15 Published:2019-08-16
  • Contact: ZHOU Xiaohua E-mail:zhou65306590@cqu.edu.cn

Abstract:

In order to improve the skin affinity and dyeing property of viscose fibers, carboxyl viscose fiber was prepared by oxidation of glucose oxidase(GOD). Silkworm peptide was grafted to the viscose fiber using N,N-dicyclohexylcarbodiimide(DCC) as crosslinking agent, and the main physicochemical and dyeing properties were characterized. The results show that the grafted silkworm peptide carboxyl viscose fiber is composed of 15 kinds of amino acids. The silkworm peptide is located on the surface of carboxyl viscose fiber. The reactions of the fiber with water-soluble aniline blue, basic fuchsin and biuret all show specific dyeing. The grafted silkworm peptide carboxyl viscose fiber is successfully prepared. The optimum process for the preparation of carboxyl viscose fiber by GOD is: pH value of 5.5, the temperature of 35 ℃, the percentage of glucose oxidase in fiber mass of 6%. The optimum process of grafting the carboxyl viscose fiber with silkworm peptide is pH value of 4.0 and the temperature of 60 ℃, the dosage of DCC of 40% of fiber mass.

Key words: carboxyl viscose fiber, N, N-dicyclohexylcarbodiimide, glucose oxidase, silkworm peptide, dyeing property

CLC Number: 

  • TS193.1

Fig.1

Infrared spectra of viscose and carboxyl viscose fiber"

Fig.2

Mass spectrometry of carboxyl viscose fiber"

Fig.3

Effect of basic fuchsin dyeing on viscose (a) and carboxylated viscose(b) fiber"

Fig.4

Infrared spectra of graft carboxyl viscose fiber before and after grafting silkworm chrysalis peptide"

Tab.1

Types and proportions of amino acids"

氨基酸
名称
蚕蛹肽
中含量/%
产物中
含量/%
氨基酸
名称
蚕蛹肽中
含量/%
产物中
含量/%
天冬氨酸 4.21 8.63 酪氨酸 2.42 3.38
谷氨酸 1.88 5.52 胱氨酸 44.95 27.70
丝氨酸 3.59 2.35 甲硫氨酸 0.73 2.16
组氨酸 0.44 2.75 色氨酸 1.91 1.56
甘氨酸 13.96 17.27 异亮氨酸 2.24
精氨酸 3.07 2.96 苯丙氨酸 6.69 7.85
苏氨酸 2.37 3.61 亮氨酸 0.82 0.54
丙氨酸 6.68 11.49 赖氨酸 6.28

Fig.5

Effect of biuret reagent dyeing on viscose fiber.(a) Carboxyl viscose fiber;(b) Grafted silkworm chrysalis peptide carboxylic viscose fiber"

Fig.6

Effects of water soluble aniline blue and basic fuchsin dyeing on viscose fiber. (a) Aniline blue dyeing on carboxyl viscose fiber; (b) Aniline blue dyeing on grafted silkworm chrysalis peptide carboxylic viscose fiber; (c) Basic fuchsin dyeing on carboxyl viscose fiber; (d) Basic fuchsin dyeing on grafted silkworm chrysalis peptide carboxylic viscose fiber"

Fig.7

SEM images of viscose (a) and grafted silkworm chrysalis peptide carboxylic viscose(b) fiber (×8 000)"

Fig.8

Effect of pH value(a), temperature(b) and glucose oxidase mass ratio (c) on oxidation ratio of viscose fiber"

Fig.9

Effect of DCC amount(a), temperature(b) and time(c) on graft ratio of viscose fiber"

[1] EL-KHEIR Amira, EZZAT Mohamed, BASSIOUNY Fattma , et al. Development of some functional properties on viscose fabrics using nano kaolin[J]. Cellulose, 2018,25(8):4805-4818.
[2] 房迪 . 国内外产业用粘胶纤维的发展[J]. 纺织导报, 2015(8):57-59.
FANG Di . Development of viscose fiber for industrial use at home and abroad[J]. China Textile Leader, 2015(8):57-59.
[3] 王红, 曹小红, 翁杨 . 蚕蛹蛋白粘胶长丝的理化性能与应用研究[J]. 中国纤检, 2011(5):76-79.
WANG Hong, CAO Xiaohong, WENG Yang . Physicochemical properties and application of silkworm chrysalis protein viscose filament[J]. China Fiber Inspection, 2011(5):76-79.
[4] TAO Yongbo, ZHANG Enjie, XIA Xiaolin , et al. Morphology and properties of cellulose/silk fibroin blend fiber prepared with 1-butyl-3-methylimidazolium chloride as solvent[J]. Cellulose, 2015,22(1):625-635.
[5] 任玉枝, 魏广信, 李木子 , 等. 玉米蛋白粘胶长丝的开发[J]. 人造纤维, 2018,48(1):9-14.
REN Yuzhi, WEI Guangxin, LI Muzi , et al. Development of cornprotein viscose filament[J]. Artificial Fibre, 2018,48(1):9-14.
[6] 姚萍, 江文, 王江 , 等. 接枝壳寡糖抗菌粘胶纤维的制备及其抗菌性与染色效果[J]. 纺织学报, 2018,39(4):9-13.
YAO Ping, JIANG Wen, WANG Jiang , et al. Preparation of chitosan oligosaccharide antibacterial viscose fiber and its antibacterial property and dyeing effect[J]. Journal of Textile Research, 2018,39(4):9-13.
[7] LIU Ting, XUE Feng, DING Enyong . Cellulose nanocrystals grafted with polyacrylamide assisted by macromolecular RAFT agents[J]. Cellulose, 2016,23(6):3717-3735.
[8] 蔡忠波, 朱军军, 刘优娜 , 等. 牛奶蛋白纤维的发展与展望[J]. 中国纤检, 2015(4):82-84.
CAI Zhongbo, ZHU Junjun, LIU Youna , et al. Development and prospect of milk protein fiber[J]. China Fiber Inspection, 2015(4):82-84.
[9] 王淑花, 戴晋明 . 羊毛蛋白改性粘胶纤维的性能[J]. 毛纺科技, 2012,40(10):1-6.
WANG Shuhua, DAI Jinming . Properties of wool protein modified viscose fiber[J]. Wool Textile Journal, 2012,40(10):1-6.
[10] LI G, YU Z, HAN N , et al. Preparation and properties of polyaniline/viscose fiber adducts.[J]. Polym Compos, 2017(38):782-788.
[11] 刘慧娟, 吴保平, 齐瑞岭 , 等. 蚕蛹蛋白改性粘胶织物服用性能测试与分析[J]. 棉纺织技术, 2013,41(12):5-8.
LIU Huijuan, WU Baoping, QI Ruiling , et al. Test and analysis on the wearability of viscose fabric modified with silkworm chrysalis protein[J]. Cotton Textile Technology, 2013,41(12):5-8.
[12] CHEN X, ZHANG M, CHEN S , et al. Peptide-modified chitosan hydrogels accelerate skin wound healing by promoting fibroblast proliferation, migration, and secretion[J]. Cell Transplant, 2017,26(8):1331-1340.
doi: 10.1177/0963689717721216 pmid: 28901187
[13] LIN R J, ZHUANG L Z, XU X Z , et al. Design of a viscose based solid amine fiber: effect of its chemical structure on adsorption properties for carbon dioxide[J]. Colloid Interface, 2013,407:425-431.
[14] 周敏 . 应用不同柱前衍生法于HPLC测定西洋参中的氨基酸[J]. 基因组学与应用生物学, 2018,37(2):524-530.
ZHOU Min . Determination of amino acids in Panax quinquefolium by HPLC with different pre column derivatization methods[J]. Genomics and Applied Biology, 2018,37(2):524-530.
[15] 徐杰, 李伟坤, 李振球 , 等. 蚕蛹蛋白粘胶纤维中蛋白质含量的测定[J]. 丝绸, 2018,55(5):8-11.
XU Jie, LI Weikun, LI Zhenqiu , et al. Determination of protein content in silkworm chrysalis protein viscose fiber[J]. Journal of Silk, 2018,55(5):8-11.
[16] 彭彬 . 双酶水解蚕蛹蛋白制备多肽的研究[D]. 济南:齐鲁工业大学, 2014: 2-30.
PENG Bin . Study on the preparation of polypeptides by double enzyme hydrolysis of silkworm chrysalis protein[D]. Jinan: Qilu University of Technology, 2014: 2-30.
[17] AL-SALAMI B . DCC promoted condensation reaction of N-phthalylamino acids with sulphanilamide[J]. Misan Journal of Acodemic Studies, 2009(15):18-25.
[1] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[2] WANG Yang, CHENG Chunzu, JIANG Li′na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[3] WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole / cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106.
[4] LI Wei, ZHANG Zhengqiao, WU Lanjuan, XU Zhenzhen, NI Qingqing, LU Yuhao. Preparation of phosphorylated-caproylated starch and its membrane properties [J]. Journal of Textile Research, 2020, 41(10): 81-86.
[5] LI Qing, GUAN Binbin, WANG Ya, LIU Tianhui, ZHANG Luohong, FAN Zenglu. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R [J]. Journal of Textile Research, 2020, 41(10): 87-93.
[6] LU Linna, LI Yonggui, LU Qilin. One-pot synthesis and characterization of aminated cellulose nanocrystals [J]. Journal of Textile Research, 2020, 41(10): 14-19.
[7] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[8] CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6.
[9] YING Lili, LI Changlong, WANG Zongqian, WANG Dengfeng, WU Kaiming, XIE Wei, CHENG Huan. Modification of down by zirconium ion with phytic acid and its thermal insulation performance [J]. Journal of Textile Research, 2020, 41(10): 94-100.
[10] GUAN Fucheng, GUO Jing, LÜ Lihua, TAN Qian, SONG Jingxing, ZHANG Xin. Hydrogen bonding mechanism and properties of polyvinyl alcohol / krill protein fibers [J]. Journal of Textile Research, 2020, 41(10): 7-13.
[11] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[12] YU Zhicai, ZHONG Yueqi, GONG R Hugh, XIE Haoyang, HUSSAIN Azmat. Fabric matching based on three-dimensional drape model and fabric weight [J]. Journal of Textile Research, 2020, 41(10): 46-51.
[13] XU Shoudong, LENG Yijin, WU Guoxin. Research on color grading of seed cotton based on neural network [J]. Journal of Textile Research, 2020, 41(10): 34-40.
[14] LIU Jinxu, LIU Pengqing. Advances in flame-retardant surface treatments for textiles [J]. Journal of Textile Research, 2020, 41(10): 178-187.
[15] FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4- and 5-directional 3-D braided composites [J]. Journal of Textile Research, 2020, 41(10): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XING Ming-jie;TANG Dian-hua;YU Chong-wen . Effect of three technologic parameters on air-jet spun yarn strength[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 49 -51 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(04): 24 -25 .
[3] YANG Ju-ping. Cross-linking flocculants of high molecule and high concentration[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 63 -64 .
[4] ZHU Zhi-feng;QIAO Zhi-yong. Causes and elimination of the foams within sizing pastes[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(7): 86 -89 .
[5] LIN Jian-long;WANG Xiao-bei;GU Xiang. Analysis and design of new model thread-taking-up mechanism of the computerized embroidery machine[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(12): 105 -108 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(02): 19 -22 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(02): 46 -48 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 1993, 14(03): 19 -21 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 1987, 8(02): 55 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1986, 7(06): 11 -16 .