Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 91-96.doi: 10.13475/j.fzxb.20180805806

• Apparel Engineering • Previous Articles     Next Articles

Impact of product attributes of online shopping clothing on customer fit satisfaction

XIAO Ping1,2,3, ZHANG Zhaohua1,2,3(), QIN Wangjie1, FAN Jiayi1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Shanghai Institute of Design and Innovation, Tongji University, Shanghai 200092, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2018-08-23 Revised:2018-12-11 Online:2019-06-15 Published:2019-06-25
  • Contact: ZHANG Zhaohua E-mail:zhangzhaohua@dhu.edu.cn

Abstract:

In order to investigate the influence of the product attributes on the customer fit satisfaction, the clothing product descriptions of 35 Taobao women's clothing store were combed. 8 display attributes related to the fit of online shopping clothing and 7 product attributes were extracted. The research framework was developed based on the S-O-R model. 204 valid samples were collected by web-based survey. A stepwise regression model was developed to estimate the influence of various product properties on customer fit satisfaction scores. The results show that customers pay more attention to reading the size chart and product indexes. However, the external attributes of the product have statistically significant influence on the customer fit satisfaction, and a positive correlation exists between the two. At the same time, the influence of body mass index(BMI) on the customer fit satisfaction was further studied. It is found that under different BMI models, the product attributes influencing the customer fit satisfaction have a significant difference, and the validity information of different target customer groups can be obtained.

Key words: online shopping clothing, product attribute, customer fit satisfaction, body index

CLC Number: 

  • TS941.17

Tab.1

Atrributes descrtiption and measurement methods"

测量
概念
编码 属性描述 量表评价
网页产
品展示
信息
D1 尺寸表 是否会仔细
阅读这些网
页展示信息?
D2 各部位测量示意图
D3 理想模特体型数据试穿型号
与着装效果平面图
D4 基于身高和体重的尺码推荐表
D5 产品指数
D6 不同体型试穿者的试穿报告
D7 理想模特着装展示视频
D8 已购买家的评论留言
服装产
品属性
S1 咨询客服 这些评价指标
对顾客选购合
适号型的有效
性影响程度?
S2 以往经验选购号型
S3 理想模特的着装展示
S4 尺寸表
S5 不同体型试穿者的试穿报告
S6 基于身高和体重的尺码推荐表
S7 已购买家的评论留言
满意
程度
F 有尺码区分的服装购后
合体满意度的评价
已购网购服装
是否合身?

Fig.1

Research framework"

Tab.2

Descriptive statistics for BMI $\ \ \ \ \ \ \ $ kg/m2"

平均值 中位数 标准差 范围 最小值 最大值
20.16 19.53 2.50 13.35 14.69 28.04

Fig.2

Frequency distribution characteristics of BMI. (a) Underweight; (b) Normal Weight; (c) Overweight"

Fig.3

Frequency distribution characteristics of fit satisfaction in different BMI groups"

Tab.3

Effect of prouduct attributes on fit satisfaction in different BMI groups"

模型 预测变量 未标准化系数 标准化系数 F 显著性
相关系数 标准误差 相关系数 t 显著性
模型A (常数) 0.578 0.096 - 6.036 0.000
合体满意度 S1 0.237 0.065 0.348 3.672 0.000 12.886 0.000
S7 0.149 0.058 0.242 2.552 0.012
模型B (常数) 0.630 0.125 - 5.053 0.000 10.207 0.002
合体满意度 S4 0.312 0.098 0.350 3.195 0.002
模型C (常数) 0.090 0.172 - 0.526 0.603
合体满意度 S2 0.381 0.131 0.398 2.906 0.007 14.349 0.000
S7 0.399 0.121 0.451 3.290 0.002

Tab.4

Effect of webpage display information on fit satisfaction in different BMI groups"

变量 模型A 模型B 模型C
相关系数 标准误差 显著性 相关系数 标准误差 显著性 相关系数 标准误差 显著性
D1 0.521 0.185 0.006 0.498 0.240 0.046
D3 -0.308 0.127 0.018
D8 0.188 0.119 0.118
[1] CHAPMAN K. Sizing up fit issues[J]. AATCC Review, 2002,2(10):33-36.
[2] 潘丽. 网络环境下销售服装的展示[D]. 无锡:江南大学, 2007: 4-8.
PAN Li. The apparel presentations of online apparel sale[D]. Wuxi:Jiangnan University, 2007: 4-8.
[3] KIM H, DAMHORST M L. The relationship of body-related self-discrepancy to body dissatisfaction, apparel involvement, concerns with fit and size of garments, and purchase intentions in online apparel shopping[J]. Clothing & Textiles Research Journal, 2010,28(4):239-254.
[4] 宋明莉. 产品描述对女大学生网购服装感知风险的影响研究[D]. 杭州:浙江理工大学, 2016: 13-15.
SONG Mingli. The impact of product description on the perceived risk of female college students online shopping clothing[D]. Hangzhou: Zhejiang Sci-Tech University, 2016: 13-15.
[5] SHIN Eonyou, BAYTAR Fatma. Apparel fit and size concerns and interntions to use virtual try-on: impacts of body satisfaction and images of models' bodies[J]. Clothing and Textiles Research Journal, 2014,32(1):20-33.
[6] ZHANG Mingli, DING Suyun, BIAN Yuanwei. The online reviews' effects on internet consumer behavior: an exploratory study[J]. Journal of Electronic Commerce in Organizations, 2017,15(4):84-94.
[7] HYUNWOO H, YANG S K, KYUNG J C. Recommendation system development for fashion retail e-commerce[J]. Electronic Commerce Reasearch and Applications, 2018,28:94-101.
[8] TAO Xuyuan, CHEN Xiao, ZENG Xianyi, et al. A customized garment collaborative design process by using virtual reality and sensory evaluation on garment fit[J]. Computers & Industrial Engineering, 2018,115:683-695.
[9] 毛连忠, 郝矿荣, 丁永生. 基于支持向量机的服装号型推荐模型建立[J]. 微型电脑应用, 2016,32(3):1-4.
MAO Lianzhong, HAO Kuangrong, DING Yongsheng. Construction of clothing size recommendation model based on SVM[J]. Microcomputer Applications, 2016,32(3):1-4.
[10] GERALD Haubl, VALERIE Trifts. Consumer decision making in online shopping environments: the effects of interactive decision aids[J]. Marketing Science, 2000,19(1):4-21.
[11] KEVIN Lane Keller. Conceptualizing, measuring, and managing customer-based brand equity[J]. Journal of Marketing, 1993,57(1):1-22.
[12] MIYAZAKI A D, GREWAL D, GOODSTEIN R C. The effect of multiple extrinsic cues on quality perceptions: a matter of consistency[J]. Journal of Consumer Research, 2005,32(1):146-153.
[1] XIAO Ping, QIAN Bodan, LU Hong, ZHANG Xianghui, ZHANG Yuan. Research progress on flatness of garment sewing [J]. Journal of Textile Research, 2019, 40(11): 182-188.
[2] LI Yang, SHEN Hong, WU Jing. Correlation between change of shoulders' structure and armhole angle in lady's wear [J]. Journal of Textile Research, 2019, 40(11): 151-154.
[3] HU Ziting, ZHENG Xiaohui, FENG Mingming, WANG Yingjian, LIU Li, DING Songtao. Influence of air gap on thermal and moisture properties of permeable protective clothing [J]. Journal of Textile Research, 2019, 40(11): 145-150.
[4] YU Jiajia, LI Jian. Data consistency and replaceability based on different human measurement methods [J]. Journal of Textile Research, 2019, 40(09): 167-172.
[5] CHEN Huixian, LU Hong, LI Shuyang, ZUO Heng. Influence of sports bra structural elements on wearing comfort [J]. Journal of Textile Research, 2019, 40(09): 159-166.
[6] CHEN Xiaona, WANG Erhui. Influence of bra underwire on vertical breast displacement [J]. Journal of Textile Research, 2019, 40(07): 133-137.
[7] WANG Min, LI Jun. Three-dimensional on-site scanning measurement and characterization of air gap entrapped between flame manikin and clothing [J]. Journal of Textile Research, 2019, 40(01): 114-119.
[8] . Heat-moisture comfort of fire-fighter’s protective clothing materials [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 122-125.
[9] . Construction of radial basis function neural network models for typical cross section curve of shorts [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 83-88.
[10] . Shape analysis of bust slice using Elliptic Fourier [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 107-0.
[11] . Construction of female’s bottoms size grading model based on neural network ensemble [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 110-0.
[12] . Surface temperature uniformity of thermal manikin [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(10): 113-116.
[13] WANG Yun-Yi, ZHAO Meng-Meng. Objective evaluation on thermal adjusting effect of PCM cooling vest under high temperature and strong radiation [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 101-105.
[14] . The Analysis of Somatotype of School Girl in Liaoning Province [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(9): 104-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!