Journal of Textile Research ›› 2018, Vol. 39 ›› Issue (12): 145-151.doi: 10.13475/j.fzxb.20180806607
Previous Articles Next Articles
[1] | BERBER Savas, KWON Young kyun, TOMANEK David. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84(20): 4613-4616. |
[2] | WANG J N, LUO X G, WU T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity [J]. Nat. Commun., 2014, 5: 3848. |
[3] | BEHABTU Natnael , Young Colin C , Tsentalovich Dmitri E.,et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. Science, 2013, 339: 182-186. |
[4] | TSENTALOVICH Dmitr E, HEADRICK Robert J, MIRRI Francesca, et al. Influence of carbon nanotube characteristics on macroscopic fiber properties [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36189-36198. |
[5] | ALIEV Ali E , GUTHY Csaba guthy, ZHANG Mei, et al., Thermal transport in MWCNT sheets and yarns [J]. Carbon, 2007, 45(15): 2880-2888. |
[6] | JAKUBINEK Michael B , JOHNSON Michel B , WHITE Mary anne, et al, Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248. |
[7] | BAI Yunxiang, ZHANG Rufan, YE Xuan, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nat. Nanotechnol., 2018, 13(7):589-595. |
[8] | GOMMANS H.H., ALLDREDGE J.W., TASHIRO H, et al. Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy [J]. J. Appl. Phys., 2000, 88(5): 2509-2514. |
[9] | VIGOLO Brigitte, PENICAUD Alain, COULON Claude, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes [J]. Science, 2000, 290(5495): 1331-1334. |
[10] | BEHABTU Natnael, YOUNG Colin C., TSENTALOVICH Dmitri E., et al. Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J]. Science, 2013, 339(6116): 182-186. |
[11] | ERICSON Lars M., FAN Hua, PENG Haiqing, et al. Macroscopic,neat, single-walled carbon nanotube fibers [J]. Science, 2004, 305(5689): 1447-1450. |
[12] | LI Yali, KINLOCH Ian A., WINDLE Alan H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis [J]. Science, 2004, 304(5668): 276-278. |
[13] | KOZIOL Krzysztof ,VILATELA Juan , MOISALA Anna, et al.High-Performance Carbon Nanotube Fiber [J]. Science, 2007, 18(5858): 1892. |
[14] | LIU Guangtong, ZHAO Yuanchun, DENG Ke, etal. Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies [J]. Nano Lett., 2008, 8(4): 1071. |
[15] | MA Wenjun, LIU Luqi, ZHANG Zhong, et al.High-Strength Composite Fibers:Realizing True Potential of Carbon Nanotubes in Polymer Matrix through ontinuous Reticulate Architecture and Molecular Level Couplings [J]. Nano Lett., 2009, 9(8): 2855. |
[16] | MA Wenjun, LIU Luqi,YANG Rong, et al. Monitoring a micro-mechanical process in macroscale carbon nanotube films and fibers [J]. Adv. Mater., 2009, 21(5), 603. |
[17] | ZHONG Xiaohua, LI Yali, LIU Yakun, et al. Continuous Multilayered Carbon Nanotube Yarns [J]. Adv. Mater., 2010, 22, 692–696. |
[18] | SHANG Yuanyuan, WANG Ying, LI Shuhui, et al. High-strength carbon nanotube fibers by twist-induced self-strengthening [J]. Carbon, 2017,119: 47-55. |
[19] | TRAN Thang, FAN Zeng, LIU Peng, et al. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods [J]. Carbon, 2016, 99: 407-415. |
[20] | JIANG Kaili, LI Qunqing, FAN Shoushan. Spinning continuous carbon nanotube yarns [J]. Nature, 2002, 419(6909): 801. |
[21] | ZHANG Mei, ATHINSON Ken R., BAUGHMAN Ray H.. Multifunctional carbon nanotube yarns by downsizing an ancient technology [J]. Science, 2004, 306(5700): 1358-1361. |
[22] | ZHANG Xiefei, LI Qingwen, TU Yi, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays [J]. Small, 2007, 3(2): 244-248. |
[23] | ZHANG X, JIANG Kaili, FENG Chen , et al. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays [J]. Adv. Mater., 2006, 18(12): 1505-1510. |
[24] | KUZNETSOV Alexander A, FONSECA Alexandre F, BAUGHMAN Ray H., et al. Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests [J]. ACS Nano, 2011, 5(2): 985-993. |
[25] | ZHU C, CHENG C, HE YH, et al. A self-entanglement mechanism for continuous pulling of carbon nanotube yarns [J]. Carbon, 2011, 49(15): 4996-5001. |
[26] | ZHAO Jingna, ZHANG Xiaohua, DI Jiangtao, et al. Double-peak mechanical properties of carbon-nanotube fibers [J]. Small, 2010, 6(22): 2612-2617. |
[27] | MIAO Menghe, MCAONNELL Jill, VUCKOVIC Lucy, et al. Poisson's ratio and porosity of carbon nanotube dry-spun yarns [J]. Carbon, 2010, 48(10): 2802-2811. |
[28] | FANG Shaoli, ZHANG Mei, ZAKHIDOV Anvar A, et al. Structure and process-dependent properties of solid-state spun carbon nanotube yarns [J]. J. Phys.: Condens Matter, 2010, 22(33): 334221. |
[29] | LIU Kai, SUN Yinghui, ZHOU Ruifeng, et al. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method [J]. Nanotechnology, 2010, 21(4): 045708. |
[30] | MIAO Menghe.The role of tw ist in dry spun carbon nanotube yarns [J]. Carbon, 2016, 96: 819-826. |
[31] | TRAN CD, HUMPHRIES W, SMITH SM, et al. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process [J]. Carbon, 2009, 47(11): 2662-2670. |
[32] | ZHAO Jingna, ZHANG Xiaohua,HUANG Yuyao, et al. A comparison of the twisted and untwisted structures for one-dimensional carbon nanotube assemblies [J]. Mater. Des., 2018,146: 20-27. |
[33] | JIA Jingjing, ZHAO Jingna, XU Geng, et al. A comparison of the mechanical properties of fibers spun from different carbon nanotubes [J]. Carbon, 2011, 49(4): 1333-1339. |
[34] | HILL Frances A, HAVEL Timothy F.Havel, HATA A.John, et al. Enhancing the Tensile Properties of Continuous Millimeter-Scale Carbon Nanotube Fibers by Densification [J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 7198-7207. |
[35] | LI Shan, ZHANG Xiaohua, ZHAO Jingna, et al. Enhancement of carbon nanotube fibres using different solvents and polymers [J]. Compos. Sci. Technol., 2012, 72(12): 1402-1407. |
[36] | LIU Kai, SUN Yyinghui, LIN Xiaoyang, et al. Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns [J]. ACS Nano, 2010, 4(10): 5827-5834. |
[37] | MENG Fancheng, ZHANG Xiaoahua, LI Ru, et al. Electro-Induced Mechanical and Thermal Responses of Carbon Nanotube Fibers [J]. Adv. Mater., 2014, 26(16): 2480-2485. |
[38] | BONCEL Slawomir, SUNDARAM Rajyashree M., WINDLE Alan H., et al. Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment [J]. ACS Nano, 2011, 5(12): 9339-9344. |
[39] | RYU Seongwoo,?LEE Yuhan,HWANG Jaewon , et al. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer [J]. Adv. Mater., 2011, 23(17): 1971-1975. |
[40] | RYU Seongwoo, CHOU Jeffrey B.,LEE Kyueui , et al. Direct Insulation-to-Conduction Transformation of Adhesive atecholamine for Simultaneous Increases of Electrical Conductivity and Mechanical Strength of CNT Fibers [J]. Adv. Mater., 2015, 27(21): 3250-3255. |
[41] | JUNG Yeonsu, CHO Young Shik, LEE Jae, et al. How can we make carbon nanotube yarn stronger?[J]. Compos. Sci. Technol., 2018, doi: 10.1016/j.compscitech.2018.02.010 |
[42] | ZU Mei, LI Qingwen, ZHU Yuntian, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test [J]. Carbon, 2012, 50(3): 1271-1279. |
[43] | DENG Fei, LV Weibang, ZHAO Haibo, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite [J]. Carbon, 2011, 49(5): 1752-1757. |
[44] | LIU Yanan, LI Min, GU Yizhuo, et al. The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites [J]. Carbon, 2013, 52(5): 550-558. |
[45] | LEI Chaoshuai , ZHAO Jiangna , ZOU Jingyun, et al. Assembly Dependent Interfacial Property of Carbon Nanotube Fibers with Epoxy and Its Enhancement via Generalized Surface Sizing [J]. Adv. Eng. Mater., 2016,18(5): 839-845. |
[46] | ZHAO Jingna, ZHANG Xiaohua, PAN Zhijuan, et al. Dynamic?Property?of?carbon nanotube-Based?Fibers [J]. Adv. Mater. Interfaces, 2015,2, 1500093. |
[47] | ZHAO Jingna , WANG Fulin , ZHANG Xiaohua , Vibration Damping of Carbon Nanotube Assembly Materials [J]. Adv. Eng. Mater., 2017, 20(3), 1700647. |
[48] | RANDENIYA Lakshman, BENDAVID Avi bendavid, MARTIN Philip J., et al. Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity [J]. Small 2010, 6(16), 1806. |
[49] | XU Geng, ZHAO Jingna , LI Shan, et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers [J]. Nanoscale 2011, 3(10), 4215. |
[50] | HANNULA Pyry-Mikko, PELTONEN Antti, AROMAA Jari, et al. Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers [J]. Carbon, 2016, 107: 281-287. |
[51] | ZHAO Jingna, LI Qingsong, GAO Bing, et al.?Vibration-assisted infiltration of nano-compounds to strengthen and functionalize carbon nanotube fibers [J]. Carbon, 2016, 101: 114-119. |
[52] | WANG Ping, LIU Dandan, ZOU Jingyun, et al. Gas Infiltration of Bromine to Enhance the Electrical Conductivity of Carbon Nanotube Fibers [J]. doi: 10.1016/j.matdes.2018.08.030 |
[53] | ZOU Jingyun, LIU Dandan, ZHAO Jingna, et al. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity [J]. ACS Appl. Mater. Interfaces, 2018, 10(9), 8197. |
[54] | SUBRAMANIAM Chandramouli, YAMADA Takeo, KOBASHI Kazufumi, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite [J]. Nat. Commun., 2013, 4, 2202. |
[55] | SUBRAMANIAM Chandramouli, SEKIGUCHI Atsuko, YAMADA Takeo, et al. Nano-scale, planar and multi-tiered current pathways from a carbon nanotube-copper composite with high conductivity, ampacity and stability [J]. Nanoscale, 2016, 8(7), 3888. |
[56] | JAKUBINEK Michael B., JOHNSON Michel B.,?WHITE Mary, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248. |
[57] | MAYHEW Eric, PRAKASH Vikas. Thermal conductivity of high performance carbon nanotube yarn-like fibers[J]. Journal of Applied Physics, 2014, 115(17): 174306. |
[58] | GSPANN Thurid S, JUCKES Stefan M, NIVEN John, et al. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology [J]. Carbon, 2017, 114: 160-168. |
[59] | XIN Guoqing, YAO Tiankai, SUN Hongtao, et al. Highly thermally conductive and mechanically strong graphene fibers [J]. Science, 2015, 349(6252): 1083-1087. |
[60] | SONG Ningjing, CHEN Chengmeng, LV Chunxiang, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders [J]. J. Mater. Chem. A, 2014, 2(39):16563-16568. |
[61] | HU Dongmei, GONG Wenbin, DI Jiangtao, et al. Strong graphene-interlayered carbon nanotube films with high thermal conductivity [J]. Carbon, 2017, 118: 659-665. |
[62] | QIU Lin, WANG Xiaotian, TANG Dawei, et al. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers [J]. Carbon, 2016, 105: 248-259. |
[63] | DI Jiangtao, ZHANG Xiaohua, YONG Zhenzhong, et al. Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles [J]. Adv. Mater., 2016, 28(47): 10529-10538. |
[64] | Hopkins AR, Labatete-Goeppinger AC, Kim H, et al. Space survivability of carbon nanotube yarn material in low Earth orbit. Carbon, 2016, 107, 77., [1] BERBER Savas, KWON Young kyun, TOMANEK David. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84(20): 4613-4616. |
[2] | WANG J N, LUO X G, WU T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity [J]. Nat. Commun., 2014, 5: 3848. |
[3] | BEHABTU Natnael , Young Colin C , Tsentalovich Dmitri E.,et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. Science, 2013, 339: 182-186. |
[4] | TSENTALOVICH Dmitr E, HEADRICK Robert J, MIRRI Francesca, et al. Influence of carbon nanotube characteristics on macroscopic fiber properties [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36189-36198. |
[5] | ALIEV Ali E , GUTHY Csaba guthy, ZHANG Mei, et al., Thermal transport in MWCNT sheets and yarns [J]. Carbon, 2007, 45(15): 2880-2888. |
[6] | JAKUBINEK Michael B , JOHNSON Michel B , WHITE Mary anne, et al, Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248. |
[7] | BAI Yunxiang, ZHANG Rufan, YE Xuan, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nat. Nanotechnol., 2018, 13(7):589-595. |
[8] | GOMMANS H.H., ALLDREDGE J.W., TASHIRO H, et al. Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy [J]. J. Appl. Phys., 2000, 88(5): 2509-2514. |
[9] | VIGOLO Brigitte, PENICAUD Alain, COULON Claude, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes [J]. Science, 2000, 290(5495): 1331-1334. |
[10] | BEHABTU Natnael, YOUNG Colin C., TSENTALOVICH Dmitri E., et al. Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J]. Science, 2013, 339(6116): 182-186. |
[11] | ERICSON Lars M., FAN Hua, PENG Haiqing, et al. Macroscopic,neat, single-walled carbon nanotube fibers [J]. Science, 2004, 305(5689): 1447-1450. |
[12] | LI Yali, KINLOCH Ian A., WINDLE Alan H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis [J]. Science, 2004, 304(5668): 276-278. |
[13] | KOZIOL Krzysztof ,VILATELA Juan , MOISALA Anna, et al.High-Performance Carbon Nanotube Fiber [J]. Science, 2007, 18(5858): 1892. |
[14] | LIU Guangtong, ZHAO Yuanchun, DENG Ke, etal. Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies [J]. Nano Lett., 2008, 8(4): 1071. |
[15] | MA Wenjun, LIU Luqi, ZHANG Zhong, et al.High-Strength Composite Fibers:Realizing True Potential of Carbon Nanotubes in Polymer Matrix through ontinuous Reticulate Architecture and Molecular Level Couplings [J]. Nano Lett., 2009, 9(8): 2855. |
[16] | MA Wenjun, LIU Luqi,YANG Rong, et al. Monitoring a micro-mechanical process in macroscale carbon nanotube films and fibers [J]. Adv. Mater., 2009, 21(5), 603. |
[17] | ZHONG Xiaohua, LI Yali, LIU Yakun, et al. Continuous Multilayered Carbon Nanotube Yarns [J]. Adv. Mater., 2010, 22, 692–696. |
[18] | SHANG Yuanyuan, WANG Ying, LI Shuhui, et al. High-strength carbon nanotube fibers by twist-induced self-strengthening [J]. Carbon, 2017,119: 47-55. |
[19] | TRAN Thang, FAN Zeng, LIU Peng, et al. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods [J]. Carbon, 2016, 99: 407-415. |
[20] | JIANG Kaili, LI Qunqing, FAN Shoushan. Spinning continuous carbon nanotube yarns [J]. Nature, 2002, 419(6909): 801. |
[21] | ZHANG Mei, ATHINSON Ken R., BAUGHMAN Ray H.. Multifunctional carbon nanotube yarns by downsizing an ancient technology [J]. Science, 2004, 306(5700): 1358-1361. |
[22] | ZHANG Xiefei, LI Qingwen, TU Yi, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays [J]. Small, 2007, 3(2): 244-248. |
[23] | ZHANG X, JIANG Kaili, FENG Chen , et al. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays [J]. Adv. Mater., 2006, 18(12): 1505-1510. |
[24] | KUZNETSOV Alexander A, FONSECA Alexandre F, BAUGHMAN Ray H., et al. Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests [J]. ACS Nano, 2011, 5(2): 985-993. |
[25] | ZHU C, CHENG C, HE YH, et al. A self-entanglement mechanism for continuous pulling of carbon nanotube yarns [J]. Carbon, 2011, 49(15): 4996-5001. |
[26] | ZHAO Jingna, ZHANG Xiaohua, DI Jiangtao, et al. Double-peak mechanical properties of carbon-nanotube fibers [J]. Small, 2010, 6(22): 2612-2617. |
[27] | MIAO Menghe, MCAONNELL Jill, VUCKOVIC Lucy, et al. Poisson's ratio and porosity of carbon nanotube dry-spun yarns [J]. Carbon, 2010, 48(10): 2802-2811. |
[28] | FANG Shaoli, ZHANG Mei, ZAKHIDOV Anvar A, et al. Structure and process-dependent properties of solid-state spun carbon nanotube yarns [J]. J. Phys.: Condens Matter, 2010, 22(33): 334221. |
[29] | LIU Kai, SUN Yinghui, ZHOU Ruifeng, et al. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method [J]. Nanotechnology, 2010, 21(4): 045708. |
[30] | MIAO Menghe.The role of tw ist in dry spun carbon nanotube yarns [J]. Carbon, 2016, 96: 819-826. |
[31] | TRAN CD, HUMPHRIES W, SMITH SM, et al. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process [J]. Carbon, 2009, 47(11): 2662-2670. |
[32] | ZHAO Jingna, ZHANG Xiaohua,HUANG Yuyao, et al. A comparison of the twisted and untwisted structures for one-dimensional carbon nanotube assemblies [J]. Mater. Des., 2018,146: 20-27. |
[33] | JIA Jingjing, ZHAO Jingna, XU Geng, et al. A comparison of the mechanical properties of fibers spun from different carbon nanotubes [J]. Carbon, 2011, 49(4): 1333-1339. |
[34] | HILL Frances A, HAVEL Timothy F.Havel, HATA A.John, et al. Enhancing the Tensile Properties of Continuous Millimeter-Scale Carbon Nanotube Fibers by Densification [J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 7198-7207. |
[35] | LI Shan, ZHANG Xiaohua, ZHAO Jingna, et al. Enhancement of carbon nanotube fibres using different solvents and polymers [J]. Compos. Sci. Technol., 2012, 72(12): 1402-1407. |
[36] | LIU Kai, SUN Yyinghui, LIN Xiaoyang, et al. Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns [J]. ACS Nano, 2010, 4(10): 5827-5834. |
[37] | MENG Fancheng, ZHANG Xiaoahua, LI Ru, et al. Electro-Induced Mechanical and Thermal Responses of Carbon Nanotube Fibers [J]. Adv. Mater., 2014, 26(16): 2480-2485. |
[38] | BONCEL Slawomir, SUNDARAM Rajyashree M., WINDLE Alan H., et al. Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment [J]. ACS Nano, 2011, 5(12): 9339-9344. |
[39] | RYU Seongwoo,?LEE Yuhan,HWANG Jaewon , et al. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer [J]. Adv. Mater., 2011, 23(17): 1971-1975. |
[40] | RYU Seongwoo, CHOU Jeffrey B.,LEE Kyueui , et al. Direct Insulation-to-Conduction Transformation of Adhesive atecholamine for Simultaneous Increases of Electrical Conductivity and Mechanical Strength of CNT Fibers [J]. Adv. Mater., 2015, 27(21): 3250-3255. |
[41] | JUNG Yeonsu, CHO Young Shik, LEE Jae, et al. How can we make carbon nanotube yarn stronger?[J]. Compos. Sci. Technol., 2018, doi: 10.1016/j.compscitech.2018.02.010 |
[42] | ZU Mei, LI Qingwen, ZHU Yuntian, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test [J]. Carbon, 2012, 50(3): 1271-1279. |
[43] | DENG Fei, LV Weibang, ZHAO Haibo, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite [J]. Carbon, 2011, 49(5): 1752-1757. |
[44] | LIU Yanan, LI Min, GU Yizhuo, et al. The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites [J]. Carbon, 2013, 52(5): 550-558. |
[45] | LEI Chaoshuai , ZHAO Jiangna , ZOU Jingyun, et al. Assembly Dependent Interfacial Property of Carbon Nanotube Fibers with Epoxy and Its Enhancement via Generalized Surface Sizing [J]. Adv. Eng. Mater., 2016,18(5): 839-845. |
[46] | ZHAO Jingna, ZHANG Xiaohua, PAN Zhijuan, et al. Dynamic?Property?of?carbon nanotube-Based?Fibers [J]. Adv. Mater. Interfaces, 2015,2, 1500093. |
[47] | ZHAO Jingna , WANG Fulin , ZHANG Xiaohua , Vibration Damping of Carbon Nanotube Assembly Materials [J]. Adv. Eng. Mater., 2017, 20(3), 1700647. |
[48] | RANDENIYA Lakshman, BENDAVID Avi bendavid, MARTIN Philip J., et al. Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity [J]. Small 2010, 6(16), 1806. |
[49] | XU Geng, ZHAO Jingna , LI Shan, et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers [J]. Nanoscale 2011, 3(10), 4215. |
[50] | HANNULA Pyry-Mikko, PELTONEN Antti, AROMAA Jari, et al. Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers [J]. Carbon, 2016, 107: 281-287. |
[51] | ZHAO Jingna, LI Qingsong, GAO Bing, et al.?Vibration-assisted infiltration of nano-compounds to strengthen and functionalize carbon nanotube fibers [J]. Carbon, 2016, 101: 114-119. |
[52] | WANG Ping, LIU Dandan, ZOU Jingyun, et al. Gas Infiltration of Bromine to Enhance the Electrical Conductivity of Carbon Nanotube Fibers [J]. doi: 10.1016/j.matdes.2018.08.030 |
[53] | ZOU Jingyun, LIU Dandan, ZHAO Jingna, et al. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity [J]. ACS Appl. Mater. Interfaces, 2018, 10(9), 8197. |
[54] | SUBRAMANIAM Chandramouli, YAMADA Takeo, KOBASHI Kazufumi, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite [J]. Nat. Commun., 2013, 4, 2202. |
[55] | SUBRAMANIAM Chandramouli, SEKIGUCHI Atsuko, YAMADA Takeo, et al. Nano-scale, planar and multi-tiered current pathways from a carbon nanotube-copper composite with high conductivity, ampacity and stability [J]. Nanoscale, 2016, 8(7), 3888. |
[56] | JAKUBINEK Michael B., JOHNSON Michel B.,?WHITE Mary, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248. |
[57] | MAYHEW Eric, PRAKASH Vikas. Thermal conductivity of high performance carbon nanotube yarn-like fibers[J]. Journal of Applied Physics, 2014, 115(17): 174306. |
[58] | GSPANN Thurid S, JUCKES Stefan M, NIVEN John, et al. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology [J]. Carbon, 2017, 114: 160-168. |
[59] | XIN Guoqing, YAO Tiankai, SUN Hongtao, et al. Highly thermally conductive and mechanically strong graphene fibers [J]. Science, 2015, 349(6252): 1083-1087. |
[60] | SONG Ningjing, CHEN Chengmeng, LV Chunxiang, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders [J]. J. Mater. Chem. A, 2014, 2(39):16563-16568. |
[61] | HU Dongmei, GONG Wenbin, DI Jiangtao, et al. Strong graphene-interlayered carbon nanotube films with high thermal conductivity [J]. Carbon, 2017, 118: 659-665. |
[62] | QIU Lin, WANG Xiaotian, TANG Dawei, et al. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers [J]. Carbon, 2016, 105: 248-259. |
[63] | DI Jiangtao, ZHANG Xiaohua, YONG Zhenzhong, et al. Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles [J]. Adv. Mater., 2016, 28(47): 10529-10538. |
[64] | Hopkins AR, Labatete-Goeppinger AC, Kim H, et al. Space survivability of carbon nanotube yarn material in low Earth orbit. Carbon, 2016, 107, 77. |
|