Journal of Textile Research ›› 2018, Vol. 39 ›› Issue (12): 145-151.doi: 10.13475/j.fzxb.20180806607

Previous Articles     Next Articles

Physical properties and mass preparation and application of carbon nanotube fibers

    

  1.  
  • Received:2018-08-27 Revised:2018-09-05 Online:2018-12-15 Published:2018-12-17

Abstract:

In order to better understand the development of carbon nanotube (CNT) fiber, the recent progresses of CNT fibers in physical properties and mass preparation in recent years were reviewed. Based on the preparation of CNT fibers, the forming methods and the enhancement methods of mechanical, electrical and thermal properties of CNT fibers were analyzed. The development process of the mass production of fiber was introduced, and existing problems were summarized. The advantages, the applications and the potential application fields of CNT fibers as a structure and function integrated material were represented, and the future main development trend was proposed and prospected according to the current industry status. CNT fibers as one of nanofiber materials with the largest industrialized potential is expected to be applied in the fields of aerospace, vehicles, ships and the like, providing powerful material and technical support for structure and function integrated materials in the military and civil fields in China.

Key words: carbon nanotube fiber, mechanical property, electrical property, thermal property, mass preparation

[1] BERBER Savas, KWON Young kyun, TOMANEK David. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84(20): 4613-4616.
[2] WANG J N, LUO X G, WU T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity [J]. Nat. Commun., 2014, 5: 3848.
[3] BEHABTU Natnael , Young Colin C , Tsentalovich Dmitri E.,et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. Science, 2013, 339: 182-186.
[4] TSENTALOVICH Dmitr E, HEADRICK Robert J, MIRRI Francesca, et al. Influence of carbon nanotube characteristics on macroscopic fiber properties [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36189-36198.
[5] ALIEV Ali E , GUTHY Csaba guthy, ZHANG Mei, et al., Thermal transport in MWCNT sheets and yarns [J]. Carbon, 2007, 45(15): 2880-2888.
[6] JAKUBINEK Michael B , JOHNSON Michel B , WHITE Mary anne, et al, Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248.
[7] BAI Yunxiang, ZHANG Rufan, YE Xuan, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nat. Nanotechnol., 2018, 13(7):589-595.
[8] GOMMANS H.H., ALLDREDGE J.W., TASHIRO H, et al. Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy [J]. J. Appl. Phys., 2000, 88(5): 2509-2514.
[9] VIGOLO Brigitte, PENICAUD Alain, COULON Claude, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes [J]. Science, 2000, 290(5495): 1331-1334.
[10] BEHABTU Natnael, YOUNG Colin C., TSENTALOVICH Dmitri E., et al. Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J]. Science, 2013, 339(6116): 182-186.
[11] ERICSON Lars M., FAN Hua, PENG Haiqing, et al. Macroscopic,neat, single-walled carbon nanotube fibers [J]. Science, 2004, 305(5689): 1447-1450.
[12] LI Yali, KINLOCH Ian A., WINDLE Alan H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis [J]. Science, 2004, 304(5668): 276-278.
[13] KOZIOL Krzysztof ,VILATELA Juan , MOISALA Anna, et al.High-Performance Carbon Nanotube Fiber [J]. Science, 2007, 18(5858): 1892.
[14] LIU Guangtong, ZHAO Yuanchun, DENG Ke, etal. Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies [J]. Nano Lett., 2008, 8(4): 1071.
[15] MA Wenjun, LIU Luqi, ZHANG Zhong, et al.High-Strength Composite Fibers:Realizing True Potential of Carbon Nanotubes in Polymer Matrix through ontinuous Reticulate Architecture and Molecular Level Couplings [J]. Nano Lett., 2009, 9(8): 2855.
[16] MA Wenjun, LIU Luqi,YANG Rong, et al. Monitoring a micro-mechanical process in macroscale carbon nanotube films and fibers [J]. Adv. Mater., 2009, 21(5), 603.
[17] ZHONG Xiaohua, LI Yali, LIU Yakun, et al. Continuous Multilayered Carbon Nanotube Yarns [J]. Adv. Mater., 2010, 22, 692–696.
[18] SHANG Yuanyuan, WANG Ying, LI Shuhui, et al. High-strength carbon nanotube fibers by twist-induced self-strengthening [J]. Carbon, 2017,119: 47-55.
[19] TRAN Thang, FAN Zeng, LIU Peng, et al. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods [J]. Carbon, 2016, 99: 407-415.
[20] JIANG Kaili, LI Qunqing, FAN Shoushan. Spinning continuous carbon nanotube yarns [J]. Nature, 2002, 419(6909): 801.
[21] ZHANG Mei, ATHINSON Ken R., BAUGHMAN Ray H.. Multifunctional carbon nanotube yarns by downsizing an ancient technology [J]. Science, 2004, 306(5700): 1358-1361.
[22] ZHANG Xiefei, LI Qingwen, TU Yi, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays [J]. Small, 2007, 3(2): 244-248.
[23] ZHANG X, JIANG Kaili, FENG Chen , et al. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays [J]. Adv. Mater., 2006, 18(12): 1505-1510.
[24] KUZNETSOV Alexander A, FONSECA Alexandre F, BAUGHMAN Ray H., et al. Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests [J]. ACS Nano, 2011, 5(2): 985-993.
[25] ZHU C, CHENG C, HE YH, et al. A self-entanglement mechanism for continuous pulling of carbon nanotube yarns [J]. Carbon, 2011, 49(15): 4996-5001.
[26] ZHAO Jingna, ZHANG Xiaohua, DI Jiangtao, et al. Double-peak mechanical properties of carbon-nanotube fibers [J]. Small, 2010, 6(22): 2612-2617.
[27] MIAO Menghe, MCAONNELL Jill, VUCKOVIC Lucy, et al. Poisson's ratio and porosity of carbon nanotube dry-spun yarns [J]. Carbon, 2010, 48(10): 2802-2811.
[28] FANG Shaoli, ZHANG Mei, ZAKHIDOV Anvar A, et al. Structure and process-dependent properties of solid-state spun carbon nanotube yarns [J]. J. Phys.: Condens Matter, 2010, 22(33): 334221.
[29] LIU Kai, SUN Yinghui, ZHOU Ruifeng, et al. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method [J]. Nanotechnology, 2010, 21(4): 045708.
[30] MIAO Menghe.The role of tw ist in dry spun carbon nanotube yarns [J]. Carbon, 2016, 96: 819-826.
[31] TRAN CD, HUMPHRIES W, SMITH SM, et al. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process [J]. Carbon, 2009, 47(11): 2662-2670.
[32] ZHAO Jingna, ZHANG Xiaohua,HUANG Yuyao, et al. A comparison of the twisted and untwisted structures for one-dimensional carbon nanotube assemblies [J]. Mater. Des., 2018,146: 20-27.
[33] JIA Jingjing, ZHAO Jingna, XU Geng, et al. A comparison of the mechanical properties of fibers spun from different carbon nanotubes [J]. Carbon, 2011, 49(4): 1333-1339.
[34] HILL Frances A, HAVEL Timothy F.Havel, HATA A.John, et al. Enhancing the Tensile Properties of Continuous Millimeter-Scale Carbon Nanotube Fibers by Densification [J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 7198-7207.
[35] LI Shan, ZHANG Xiaohua, ZHAO Jingna, et al. Enhancement of carbon nanotube fibres using different solvents and polymers [J]. Compos. Sci. Technol., 2012, 72(12): 1402-1407.
[36] LIU Kai, SUN Yyinghui, LIN Xiaoyang, et al. Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns [J]. ACS Nano, 2010, 4(10): 5827-5834.
[37] MENG Fancheng, ZHANG Xiaoahua, LI Ru, et al. Electro-Induced Mechanical and Thermal Responses of Carbon Nanotube Fibers [J]. Adv. Mater., 2014, 26(16): 2480-2485.
[38] BONCEL Slawomir, SUNDARAM Rajyashree M., WINDLE Alan H., et al. Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment [J]. ACS Nano, 2011, 5(12): 9339-9344.
[39] RYU Seongwoo,?LEE Yuhan,HWANG Jaewon , et al. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer [J]. Adv. Mater., 2011, 23(17): 1971-1975.
[40] RYU Seongwoo, CHOU Jeffrey B.,LEE Kyueui , et al. Direct Insulation-to-Conduction Transformation of Adhesive atecholamine for Simultaneous Increases of Electrical Conductivity and Mechanical Strength of CNT Fibers [J]. Adv. Mater., 2015, 27(21): 3250-3255.
[41] JUNG Yeonsu, CHO Young Shik, LEE Jae, et al. How can we make carbon nanotube yarn stronger?[J]. Compos. Sci. Technol., 2018, doi: 10.1016/j.compscitech.2018.02.010
[42] ZU Mei, LI Qingwen, ZHU Yuntian, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test [J]. Carbon, 2012, 50(3): 1271-1279.
[43] DENG Fei, LV Weibang, ZHAO Haibo, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite [J]. Carbon, 2011, 49(5): 1752-1757.
[44] LIU Yanan, LI Min, GU Yizhuo, et al. The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites [J]. Carbon, 2013, 52(5): 550-558.
[45] LEI Chaoshuai , ZHAO Jiangna , ZOU Jingyun, et al. Assembly Dependent Interfacial Property of Carbon Nanotube Fibers with Epoxy and Its Enhancement via Generalized Surface Sizing [J]. Adv. Eng. Mater., 2016,18(5): 839-845.
[46] ZHAO Jingna, ZHANG Xiaohua, PAN Zhijuan, et al. Dynamic?Property?of?carbon nanotube-Based?Fibers [J]. Adv. Mater. Interfaces, 2015,2, 1500093.
[47] ZHAO Jingna , WANG Fulin , ZHANG Xiaohua , Vibration Damping of Carbon Nanotube Assembly Materials [J]. Adv. Eng. Mater., 2017, 20(3), 1700647.
[48] RANDENIYA Lakshman, BENDAVID Avi bendavid, MARTIN Philip J., et al. Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity [J]. Small 2010, 6(16), 1806.
[49] XU Geng, ZHAO Jingna , LI Shan, et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers [J]. Nanoscale 2011, 3(10), 4215.
[50] HANNULA Pyry-Mikko, PELTONEN Antti, AROMAA Jari, et al. Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers [J]. Carbon, 2016, 107: 281-287.
[51] ZHAO Jingna, LI Qingsong, GAO Bing, et al.?Vibration-assisted infiltration of nano-compounds to strengthen and functionalize carbon nanotube fibers [J]. Carbon, 2016, 101: 114-119.
[52] WANG Ping, LIU Dandan, ZOU Jingyun, et al. Gas Infiltration of Bromine to Enhance the Electrical Conductivity of Carbon Nanotube Fibers [J]. doi: 10.1016/j.matdes.2018.08.030
[53] ZOU Jingyun, LIU Dandan, ZHAO Jingna, et al. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity [J]. ACS Appl. Mater. Interfaces, 2018, 10(9), 8197.
[54] SUBRAMANIAM Chandramouli, YAMADA Takeo, KOBASHI Kazufumi, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite [J]. Nat. Commun., 2013, 4, 2202.
[55] SUBRAMANIAM Chandramouli, SEKIGUCHI Atsuko, YAMADA Takeo, et al. Nano-scale, planar and multi-tiered current pathways from a carbon nanotube-copper composite with high conductivity, ampacity and stability [J]. Nanoscale, 2016, 8(7), 3888.
[56] JAKUBINEK Michael B., JOHNSON Michel B.,?WHITE Mary, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248.
[57] MAYHEW Eric, PRAKASH Vikas. Thermal conductivity of high performance carbon nanotube yarn-like fibers[J]. Journal of Applied Physics, 2014, 115(17): 174306.
[58] GSPANN Thurid S, JUCKES Stefan M, NIVEN John, et al. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology [J]. Carbon, 2017, 114: 160-168.
[59] XIN Guoqing, YAO Tiankai, SUN Hongtao, et al. Highly thermally conductive and mechanically strong graphene fibers [J]. Science, 2015, 349(6252): 1083-1087.
[60] SONG Ningjing, CHEN Chengmeng, LV Chunxiang, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders [J]. J. Mater. Chem. A, 2014, 2(39):16563-16568.
[61] HU Dongmei, GONG Wenbin, DI Jiangtao, et al. Strong graphene-interlayered carbon nanotube films with high thermal conductivity [J]. Carbon, 2017, 118: 659-665.
[62] QIU Lin, WANG Xiaotian, TANG Dawei, et al. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers [J]. Carbon, 2016, 105: 248-259.
[63] DI Jiangtao, ZHANG Xiaohua, YONG Zhenzhong, et al. Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles [J]. Adv. Mater., 2016, 28(47): 10529-10538.
[64] Hopkins AR, Labatete-Goeppinger AC, Kim H, et al. Space survivability of carbon nanotube yarn material in low Earth orbit. Carbon, 2016, 107, 77., [1] BERBER Savas, KWON Young kyun, TOMANEK David. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84(20): 4613-4616.
[2] WANG J N, LUO X G, WU T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity [J]. Nat. Commun., 2014, 5: 3848.
[3] BEHABTU Natnael , Young Colin C , Tsentalovich Dmitri E.,et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity [J]. Science, 2013, 339: 182-186.
[4] TSENTALOVICH Dmitr E, HEADRICK Robert J, MIRRI Francesca, et al. Influence of carbon nanotube characteristics on macroscopic fiber properties [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36189-36198.
[5] ALIEV Ali E , GUTHY Csaba guthy, ZHANG Mei, et al., Thermal transport in MWCNT sheets and yarns [J]. Carbon, 2007, 45(15): 2880-2888.
[6] JAKUBINEK Michael B , JOHNSON Michel B , WHITE Mary anne, et al, Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248.
[7] BAI Yunxiang, ZHANG Rufan, YE Xuan, et al. Carbon nanotube bundles with tensile strength over 80 GPa [J]. Nat. Nanotechnol., 2018, 13(7):589-595.
[8] GOMMANS H.H., ALLDREDGE J.W., TASHIRO H, et al. Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy [J]. J. Appl. Phys., 2000, 88(5): 2509-2514.
[9] VIGOLO Brigitte, PENICAUD Alain, COULON Claude, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes [J]. Science, 2000, 290(5495): 1331-1334.
[10] BEHABTU Natnael, YOUNG Colin C., TSENTALOVICH Dmitri E., et al. Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J]. Science, 2013, 339(6116): 182-186.
[11] ERICSON Lars M., FAN Hua, PENG Haiqing, et al. Macroscopic,neat, single-walled carbon nanotube fibers [J]. Science, 2004, 305(5689): 1447-1450.
[12] LI Yali, KINLOCH Ian A., WINDLE Alan H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis [J]. Science, 2004, 304(5668): 276-278.
[13] KOZIOL Krzysztof ,VILATELA Juan , MOISALA Anna, et al.High-Performance Carbon Nanotube Fiber [J]. Science, 2007, 18(5858): 1892.
[14] LIU Guangtong, ZHAO Yuanchun, DENG Ke, etal. Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies [J]. Nano Lett., 2008, 8(4): 1071.
[15] MA Wenjun, LIU Luqi, ZHANG Zhong, et al.High-Strength Composite Fibers:Realizing True Potential of Carbon Nanotubes in Polymer Matrix through ontinuous Reticulate Architecture and Molecular Level Couplings [J]. Nano Lett., 2009, 9(8): 2855.
[16] MA Wenjun, LIU Luqi,YANG Rong, et al. Monitoring a micro-mechanical process in macroscale carbon nanotube films and fibers [J]. Adv. Mater., 2009, 21(5), 603.
[17] ZHONG Xiaohua, LI Yali, LIU Yakun, et al. Continuous Multilayered Carbon Nanotube Yarns [J]. Adv. Mater., 2010, 22, 692–696.
[18] SHANG Yuanyuan, WANG Ying, LI Shuhui, et al. High-strength carbon nanotube fibers by twist-induced self-strengthening [J]. Carbon, 2017,119: 47-55.
[19] TRAN Thang, FAN Zeng, LIU Peng, et al. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods [J]. Carbon, 2016, 99: 407-415.
[20] JIANG Kaili, LI Qunqing, FAN Shoushan. Spinning continuous carbon nanotube yarns [J]. Nature, 2002, 419(6909): 801.
[21] ZHANG Mei, ATHINSON Ken R., BAUGHMAN Ray H.. Multifunctional carbon nanotube yarns by downsizing an ancient technology [J]. Science, 2004, 306(5700): 1358-1361.
[22] ZHANG Xiefei, LI Qingwen, TU Yi, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays [J]. Small, 2007, 3(2): 244-248.
[23] ZHANG X, JIANG Kaili, FENG Chen , et al. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays [J]. Adv. Mater., 2006, 18(12): 1505-1510.
[24] KUZNETSOV Alexander A, FONSECA Alexandre F, BAUGHMAN Ray H., et al. Structural Model for Dry-Drawing of Sheets and Yarns from Carbon Nanotube Forests [J]. ACS Nano, 2011, 5(2): 985-993.
[25] ZHU C, CHENG C, HE YH, et al. A self-entanglement mechanism for continuous pulling of carbon nanotube yarns [J]. Carbon, 2011, 49(15): 4996-5001.
[26] ZHAO Jingna, ZHANG Xiaohua, DI Jiangtao, et al. Double-peak mechanical properties of carbon-nanotube fibers [J]. Small, 2010, 6(22): 2612-2617.
[27] MIAO Menghe, MCAONNELL Jill, VUCKOVIC Lucy, et al. Poisson's ratio and porosity of carbon nanotube dry-spun yarns [J]. Carbon, 2010, 48(10): 2802-2811.
[28] FANG Shaoli, ZHANG Mei, ZAKHIDOV Anvar A, et al. Structure and process-dependent properties of solid-state spun carbon nanotube yarns [J]. J. Phys.: Condens Matter, 2010, 22(33): 334221.
[29] LIU Kai, SUN Yinghui, ZHOU Ruifeng, et al. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method [J]. Nanotechnology, 2010, 21(4): 045708.
[30] MIAO Menghe.The role of tw ist in dry spun carbon nanotube yarns [J]. Carbon, 2016, 96: 819-826.
[31] TRAN CD, HUMPHRIES W, SMITH SM, et al. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process [J]. Carbon, 2009, 47(11): 2662-2670.
[32] ZHAO Jingna, ZHANG Xiaohua,HUANG Yuyao, et al. A comparison of the twisted and untwisted structures for one-dimensional carbon nanotube assemblies [J]. Mater. Des., 2018,146: 20-27.
[33] JIA Jingjing, ZHAO Jingna, XU Geng, et al. A comparison of the mechanical properties of fibers spun from different carbon nanotubes [J]. Carbon, 2011, 49(4): 1333-1339.
[34] HILL Frances A, HAVEL Timothy F.Havel, HATA A.John, et al. Enhancing the Tensile Properties of Continuous Millimeter-Scale Carbon Nanotube Fibers by Densification [J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 7198-7207.
[35] LI Shan, ZHANG Xiaohua, ZHAO Jingna, et al. Enhancement of carbon nanotube fibres using different solvents and polymers [J]. Compos. Sci. Technol., 2012, 72(12): 1402-1407.
[36] LIU Kai, SUN Yyinghui, LIN Xiaoyang, et al. Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns [J]. ACS Nano, 2010, 4(10): 5827-5834.
[37] MENG Fancheng, ZHANG Xiaoahua, LI Ru, et al. Electro-Induced Mechanical and Thermal Responses of Carbon Nanotube Fibers [J]. Adv. Mater., 2014, 26(16): 2480-2485.
[38] BONCEL Slawomir, SUNDARAM Rajyashree M., WINDLE Alan H., et al. Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment [J]. ACS Nano, 2011, 5(12): 9339-9344.
[39] RYU Seongwoo,?LEE Yuhan,HWANG Jaewon , et al. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer [J]. Adv. Mater., 2011, 23(17): 1971-1975.
[40] RYU Seongwoo, CHOU Jeffrey B.,LEE Kyueui , et al. Direct Insulation-to-Conduction Transformation of Adhesive atecholamine for Simultaneous Increases of Electrical Conductivity and Mechanical Strength of CNT Fibers [J]. Adv. Mater., 2015, 27(21): 3250-3255.
[41] JUNG Yeonsu, CHO Young Shik, LEE Jae, et al. How can we make carbon nanotube yarn stronger?[J]. Compos. Sci. Technol., 2018, doi: 10.1016/j.compscitech.2018.02.010
[42] ZU Mei, LI Qingwen, ZHU Yuntian, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test [J]. Carbon, 2012, 50(3): 1271-1279.
[43] DENG Fei, LV Weibang, ZHAO Haibo, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite [J]. Carbon, 2011, 49(5): 1752-1757.
[44] LIU Yanan, LI Min, GU Yizhuo, et al. The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites [J]. Carbon, 2013, 52(5): 550-558.
[45] LEI Chaoshuai , ZHAO Jiangna , ZOU Jingyun, et al. Assembly Dependent Interfacial Property of Carbon Nanotube Fibers with Epoxy and Its Enhancement via Generalized Surface Sizing [J]. Adv. Eng. Mater., 2016,18(5): 839-845.
[46] ZHAO Jingna, ZHANG Xiaohua, PAN Zhijuan, et al. Dynamic?Property?of?carbon nanotube-Based?Fibers [J]. Adv. Mater. Interfaces, 2015,2, 1500093.
[47] ZHAO Jingna , WANG Fulin , ZHANG Xiaohua , Vibration Damping of Carbon Nanotube Assembly Materials [J]. Adv. Eng. Mater., 2017, 20(3), 1700647.
[48] RANDENIYA Lakshman, BENDAVID Avi bendavid, MARTIN Philip J., et al. Composite Yarns of Multiwalled Carbon Nanotubes with Metallic Electrical Conductivity [J]. Small 2010, 6(16), 1806.
[49] XU Geng, ZHAO Jingna , LI Shan, et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers [J]. Nanoscale 2011, 3(10), 4215.
[50] HANNULA Pyry-Mikko, PELTONEN Antti, AROMAA Jari, et al. Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers [J]. Carbon, 2016, 107: 281-287.
[51] ZHAO Jingna, LI Qingsong, GAO Bing, et al.?Vibration-assisted infiltration of nano-compounds to strengthen and functionalize carbon nanotube fibers [J]. Carbon, 2016, 101: 114-119.
[52] WANG Ping, LIU Dandan, ZOU Jingyun, et al. Gas Infiltration of Bromine to Enhance the Electrical Conductivity of Carbon Nanotube Fibers [J]. doi: 10.1016/j.matdes.2018.08.030
[53] ZOU Jingyun, LIU Dandan, ZHAO Jingna, et al. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity [J]. ACS Appl. Mater. Interfaces, 2018, 10(9), 8197.
[54] SUBRAMANIAM Chandramouli, YAMADA Takeo, KOBASHI Kazufumi, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite [J]. Nat. Commun., 2013, 4, 2202.
[55] SUBRAMANIAM Chandramouli, SEKIGUCHI Atsuko, YAMADA Takeo, et al. Nano-scale, planar and multi-tiered current pathways from a carbon nanotube-copper composite with high conductivity, ampacity and stability [J]. Nanoscale, 2016, 8(7), 3888.
[56] JAKUBINEK Michael B., JOHNSON Michel B.,?WHITE Mary, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns [J]. Carbon, 2012, 50(1): 244-248.
[57] MAYHEW Eric, PRAKASH Vikas. Thermal conductivity of high performance carbon nanotube yarn-like fibers[J]. Journal of Applied Physics, 2014, 115(17): 174306.
[58] GSPANN Thurid S, JUCKES Stefan M, NIVEN John, et al. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology [J]. Carbon, 2017, 114: 160-168.
[59] XIN Guoqing, YAO Tiankai, SUN Hongtao, et al. Highly thermally conductive and mechanically strong graphene fibers [J]. Science, 2015, 349(6252): 1083-1087.
[60] SONG Ningjing, CHEN Chengmeng, LV Chunxiang, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders [J]. J. Mater. Chem. A, 2014, 2(39):16563-16568.
[61] HU Dongmei, GONG Wenbin, DI Jiangtao, et al. Strong graphene-interlayered carbon nanotube films with high thermal conductivity [J]. Carbon, 2017, 118: 659-665.
[62] QIU Lin, WANG Xiaotian, TANG Dawei, et al. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers [J]. Carbon, 2016, 105: 248-259.
[63] DI Jiangtao, ZHANG Xiaohua, YONG Zhenzhong, et al. Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles [J]. Adv. Mater., 2016, 28(47): 10529-10538.
[64] Hopkins AR, Labatete-Goeppinger AC, Kim H, et al. Space survivability of carbon nanotube yarn material in low Earth orbit. Carbon, 2016, 107, 77.
[1] . Influence of pretreatment process on luffa fiber′s properties [J]. Journal of Textile Research, 2018, 39(12): 72-77.
[2] . Tensile mechanical properties simulation of viscose woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2018, 39(09): 39-43.
[3] . Development of new fluoroethylene vinyl ether reinforcement membrane and its mechanical properties [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 50-54.
[4] . Influence of humidity and temperature on properties of sized polyester/cotton 65/35 yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 70-74.
[5] . Preparation and properties of collagen/high-molecular weight chitosan composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 8-13.
[6] . Biological degumming of oil-flax fibers based on radio frequency treatment [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 73-78.
[7] . Development and property evaluation of fake knitted denim fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 45-49.
[8] . Finite element simulation on tensile mechanical properties of three-elementary weave fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 41-47.
[9] . Crystallization behavior and mechanical properties of electrospun polyester/palm fiber-based activated carbon composite  [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 6-10.
[10] . Preparation and properties of phosphorus-containing flame retardant polyacrylonitrile fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 1-5.
[11] . Thermal properties of polyimide fiber fabrics for textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 62-67.
[12] . Preparation and properties of ethylene-tetrafluoroethylene copolymer fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 43-48.
[13] . Influence of inorganic fillers on properties of polyamide wet-coating trademark fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 114-121.
[14] . Mechanical properties in  wool fibers in engineering anhydrous dyeing using supercritical carbon dioxide [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 53-59.
[15] . Electrical and mechanical properties of conductive polytrimethylene terephthalate / polyaniline composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 40-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 72 -73 .
[2] WANG Xiao-hong;YANG Suo-ting;YAO Jin-bo;LIU Jian-zhong;ZHANG Shu- jie . Study on the properties of slenderized wool[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 39 -41 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 1984, 5(09): 25 -29 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 1987, 8(01): 45 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 1996, 17(04): 53 .
[6] ZHANG Ying-chun;JIANG Xiu-ming;HAN Xu-tong . Modification of Malimo stitch-knitting machine for parallel weft insertion[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 83 -88 .
[7] MA Shi-ping. 基于MATLAB的六连杆打纬机构优化设计及仿真[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 40 -42 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 42 -43 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 1984, 5(09): 30 -32 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1998, 19(05): 39 -41 .