Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 22-27.doi: 10.13475/j.fzxb.20180807006

• Fiber Materials • Previous Articles     Next Articles

Influence of oxygen plasma modification on surface properties of polyimide fiber

DU Xiaodong1,2, LIN Fangbing1,2, JIANG Jinhua1,2(), CHEN Nanliang1,2, LIU Yanping2   

  1. 1. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-08-27 Revised:2019-01-24 Online:2019-09-15 Published:2019-09-23
  • Contact: JIANG Jinhua E-mail:jiangjinhua@dhu.edu.cn

Abstract:

In order to enhance the interface adhesion performance, polyimide fiber was modified by oxygen plasma for different time periods and the influence of modification on the surface properties of polyimide fiber was analyzed by X-ray photoelectron spectroscopy, field emission scanning electron microscopy, single fiber fragmentation method and contact angle measurement. The results show that the surface properties of polyimide fibers are improved remarkably after 4 min treatment under the conditions of oxygen plasma modification with pressure of 10 Pa and power of 100 W. At the treatment conditions, the content ratio of O to C on the surface is increased by 108%, compared with untreated fibers. The contents of C—O and C=O increase from 7.6% and 10.3% to 20.4% and 19.2%, respectively. The surface micro-cracks are uniform and dense. The interfacial shear strength between fiber and resin increases from 29.88 MPa to 46.13 MPa,and its enhancement rate is 54%. And the hydrophobic surface is improved to hydrophilic surface, the contact angle reduces from about 110° to below 55°.

Key words: polyimide fiber, oxygen plasma modification, surface chemical composition, surface morphology, interface adhesion, wettability

CLC Number: 

  • TS195.6

Fig.1

Weibull fitting plots of fiber strength after oxygen plasma modification at different times periods. (a)Untreated;(b) Treatment for 2 min;(c) Treatment for 4 min;(d) Treatment for 6 min"

Tab.1

Shape parameters and mechanical properties of oxygen plasma modified fibers"

改性时间/
min
λ 断裂强度/
GPa
初始弹性
模量/GPa
断裂伸长
率/%
未处理 13.07 0.93 9.26 15.43
2 9.08 0.91 9.25 14.94
4 9.79 0.88 8.46 15.92
6 16.44 0.83 8.42 14.86

Fig.2

SEM images of untreated and oxygen plasma modified fibers(×50 000). (a) Untreated;(b) Treatment for 2 min; (c) Treatment for 4 min;(d) Treatment for 6 min"

Tab.2

Analysis of chemical composition of oxygen plasma modified fiber surfaces"

改性时间/
min
元素含量/% O与C
含量比
N与C
含量比
C O N
未处理 77.4 19.2 3.4 0.25 0.04
2 70.4 24.3 5.3 0.35 0.08
4 62.5 32.6 4.9 0.52 0.08
6 68.4 24.3 7.3 0.36 0.11

Fig.3

XPS C1s spectra of untreated and modified oxygen plasma modified fibers. (a)Untreated;(b)Treatment for 2 min;(c)Treatment for 4 min;(d)Treatment for 6 min"

Tab.3

Surface functional group content of oxygen plasma modified fiber surfaces"

改性时间/
min
官能基团含量/%
C—C C—N C—O C=O
未处理 46.3 35.8 7.6 10.3
2 38.0 28.6 21.6 11.8
4 31.5 28.9 20.4 19.2
6 38.9 28.0 17.0 16.1

Tab.4

Interfacial shear strength calculation result of oxygen plasma modified fibers"

改性时间/
min
Lc/
μm
τ/
MPa
剪切强度
增长率/%
未处理 276.41 29.88
2 231.70 40.96 37
4 196.02 46.13 54
6 185.32 38.53 29

Fig.4

Microscopic observation of droplet shape on polyimide fiber. (a)Untreated;(b) Treatment for 4 min"

[1] HASEGAWA M, HORIE K. Photophysics, photochemistry, and optical properties of polyimides[J]. Progress in Polymer Science, 2001,26(2):259-335.
[2] 常晶菁, 牛鸿庆, 武德珍. 聚酰亚胺纤维的研究进展[J]. 高分子通报, 2017(3):19-27.
CHANG Jingjing, NIU Hongqing, WU Dezhen. Research progress of polyimide fibers[J]. Chinese Polymer Bulletin, 2017(3):19-27
[3] KANEDA T, KATSURA T, NAKAGAWA K, et al. High-strength-high-modulus polyimide fibers: II: spinning and properties of fibers[J]. Journal of Applied Polymer Science, 2010,32(1):3151-3176.
[4] 林芳兵, 蒋金华, 陈南梁, 等. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018,39(5):14-19.
LIN Fangbing, JIANG Jinhua, CHEN Nanliang, et al. High-performance polyimide fiber and its weavability[J]. Journal of Textile Research, 2018,39(5):14-19.
[5] TIAN Guofeng, CHEN Binbin, QI Shengli, et al. Enhanced surface free energy of polyimide fibers by alkali treatment and its interfacial adhesion behavior to epoxy resins[J]. Composite Interfaces, 2016,23(2):145-155.
[6] YUN H K, CHO K, KIM J K, et al. Adhesion improvement of epoxy resin/polyimide joints by amine treatment of polyimide surface[J]. Polymer, 1997,38(4):827-834.
[7] CHAN C M, KO T M, HIRAOKA H. Polymer surface modification by plasmas and photons[J]. Surface Science Reports, 1996,24(1):1-54.
[8] SUN Xuyang, BU Junfeng, LIU Weiwei, et al. Surface modification of polyimide fibers by oxygen plasma treatment and interfacial adhesion behavior of a polyimide fiber/epoxy composite[J]. Science & Engineering of Composite Materials, 2015,24(4):477-484.
[9] KELLY A, TYSON W R. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics & Physics of Solids, 1965,13(6):329-350.
[10] 张焕侠. 碳纤维表面和界面性能研究及评价[D]. 上海:东华大学, 2014: 27-29.
ZHANG Huanxia. Research and evaluation of carbon fiber surface and interface properties[D]. Shanghai: Donghua University, 2014: 27-29.
[11] SIMIONESCU C I, DENES F. Use of plasma chemistry in the field of synjournal and modification of the natural macromolecular compounds[J]. Cellulose Chemistry & Technology, 1980,14:285.
[12] 陈平, 陈辉. 先进聚合物基复合材料界面及纤维表面改性[M]. 北京: 科学出版社, 2010: 20-24.
CHEN Ping, CHEN Hui. Advanced Polymer Matrix Composite Interface and Fiber Surface Modifica-tion[M]. Beijing: Science Press, 2010: 20-24.
[13] JIA Caixia, CHEN Ping, LI Wei, et al. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science, 2011,257(9):4165-4170.
[14] 张承双. 氧气等离子体改性对PBO纤维表面及PBO/PPESK复合材料界面的影响[D]. 大连:大连理工大学, 2009: 14-16.
ZHANG Chengshuang. Effect of oxygen plasma modification on the surface properties of PBO fibers and interface properties of PBO/PPESK composites[D]. Dalian: Dalian University of Technology, 2009: 14-16.
[15] PARK J M, KIM D S, KIM S R. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability[J]. Journal of Colloid & Interface Science, 2003,264(2):431-445.
doi: 10.1016/S0021-9797(03)00419-3 pmid: 16256662
[16] 孙伟, 杨冰磊. 低温等离子体改善聚酰亚胺纤维亲水性研究[J]. 产业用纺织品, 2008,26(11):27-30.
SUN Wei, YANG Binglei. Study on low temperature plasma modification for surface hydrophilic of polyimide fiber[J]. Technical Textiles, 2008,26(11):27-30.
[17] 杨建忠, 杨冰磊. 利用低温等离子体处理实现聚酰亚胺纤维表面改性[J]. 西安工程大学学报, 2009,23(2):136-140.
YANG Jianzhong, YANG Binglei. Surface modification effect of polyimide fiber by low temperature plasma treatment[J]. Journal of Xi'an Polytechnic University, 2009,23(2):136-140.
[1] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[2] . High-performance polyimide fiber and its weavability [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 14-19.
[3] . Flame retardant finishing of polyester fabric with phenyl phosphate ester containing triazine structure [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 98-102.
[4] . Classified extraction and properties of bamboo fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 9-15.
[5] . Thermal properties of polyimide fiber fabrics for textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 62-67.
[6] . Experimental research on deposition process of micro-droplet jet printing on fabric surface [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 139-144.
[7] . Anti-ultraviolet finishing and light stability of bleached wool [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 99-107.
[8] . Filtration property of chitosan-modified electrospun polysulfone fibrous membrane for dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 1-7.
[9] . Review on unidirectional water transport functional fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(07): 157-161.
[10] . Research on objective evaluation of fabric wettability based on image processing [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(9): 44-0.
[11] . Effect of oxygen plasma pre-treatment on electroconductive property of UHMWPE/PANI composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 1-7.
[12] Yun-Jie YIN. Preparation and properties of hydrophobic-hydrophilic switchable coating via UV radiation on cotton fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 120-124.
[13] . Structure and properties of nano-copper thin films deposited on carbon fiber fabric by magietron sputtering [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(9): 10-14.
[14] YIN Chao-Qing, XU Yuan, ZHANG Qing-Hua. Polyimide fiber and its flame retardance [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 116-120.
[15] LI Wen-Tao, YAO Shu-Huan, PENG Shu-Ping, WU Meng, ZHANG Chao-Bo, ZHANG Zai-Xing. Thermal oxidizing aging properties of modified aromatic polyoxadiazoles fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 151-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!