Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 8-14.doi: 10.13475/j.fzxb.20180807607

• Fiber Materials • Previous Articles     Next Articles

Influence of relative molecular weight of copolyamide 6/66 on crystallization and rheological properties thereof

PAN Weinan1,2, XIANG Hengxue1,2, ZHAI Gongxun1,2, NI Mingda1, SHEN Jiaguang3, ZHU Meifang1,2()   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. Jiangsu Haiyang Chemical Fiber Co., Ltd., Taizhou, Jiangsu 225300, China
  • Received:2018-08-31 Revised:2018-11-28 Online:2019-09-15 Published:2019-09-23
  • Contact: ZHU Meifang E-mail:zhumf@dhu.edu.cn

Abstract:

In order to explore the melt processing properties of new copolyamide 6/66 (PA6/66), the influence of the relative molecular weight on the melt behavior, crystallization behavior and melt rheological behavior of PA6/66 were characterized by differential scanning calorimetry, melt flow rate instrument and capillary rheometer. The results show that PA6/66 exhibits a single melting peak, and its melting point and glass transition temperature are less affected by relative molecular weight, which are about 210 ℃ and 45 ℃, respectively. Compared with PA6, the melting temperature, melting enthalpy and crystallization enthalpy of PA6/66 decreases. With the increase of relative molecular weight, the crystallization enthalpy of PA6/66 decreases from 45.16 J/g to 43.67 J/g at the cooling rate of 20 ℃/min, which is significantly lower than the crystallization enthalpy of PA6(64.49 J/g) at the same molecular weight. The copolymers are all pseudoplastic fluids in non-Newtonian fluids, with the increase of temperature, the non-Newtonian index increases and the sensitivity to shear rate decreased. In addition, PA6/66 has a higher viscous activation energy than PA6 at high shear rates.

Key words: polyamide 6, copolyamide 6/66, crystallization behavior, rheological property, relative molecular weight

CLC Number: 

  • TQ342

Fig.1

Melting curves of PA6/66 and PA6 resins"

Tab.1

Thermal performance data of PA6/66 and PA6 resins"

样品编号 Tg/℃ Tcc/℃ Tm/℃ ΔHm/(J·g-1) Xc/%
P-1 44.45 69.71 211.38 53.20 23.1
P-2 44.70 69.89 211.22 50.77 22.1
P-3 44.72 69.91 211.60 48.43 21.1
P-4 45.14 70.07 208.42 43.42 18.9
PA6 45.21 67.85 223.77 55.04 23.9

Fig.2

Melt flow rate vs. temperature of PA6/66 and PA6 resins"

Fig.3

DSC curves of PA6/66 and PA6 resins at different cooling rates & melt curves of P-4. (a)P-1;(b)P-2;(c)P-3;(d)P-4;(e)PA6;(f)Melt curves of P-4"

Tab.2

Thermal performance parameters of PA6/66 and PA6 resins at different cooling rates"

样品编号 降温速率/
(℃·min-1)
Tc/℃ ΔHc/
(J·g-1)
t1/2/s
2.5 166.76 51.62 363.8
P-1 5.0 159.31 49.09 205.2
10.0 151.66 46.79 124.4
20.0 140.71 45.16 77.8
2.5 165.13 51.34 408.3
P-2 5.0 158.29 48.90 224.6
10.0 150.55 45.63 134.4
20.0 139.47 44.96 78.4
2.5 163.49 46.35 424.6
P-3 5.0 157.36 44.70 225.2
10.0 149.63 43.60 133.4
20.0 139.36 42.43 81.5
2.5 163.88 50.43 423.7
P-4 5.0 158.17 47.79 221.5
10.0 151.84 45.67 126.7
20.0 146.78 43.67 88.4
2.5 178.31 74.88 420.0
PA6 5.0 171.35 73.58 234.7
10.0 163.19 67.04 142.1
20.0 152.96 64.49 91.3

Fig.4

Shear stress vs. shearing rate of PA6/66 and PA6 resins at different temperatures"

Fig.5

Apparent viscosity vs. 1/T of PA6/66 and PA6 resins at different shearing rate"

Fig.6

Non-Newtonian indexes of PA6/66 and PA6 resins at different temperatures"

Fig.7

Activation energy of PA6/66 and PA6 resins at different shearing rates"

[1] 王松林, 相恒学, 徐锦龙, 等. 通用合成纤维高值化功能化基础问题与发展趋势[J]. 纺织学报, 2018,39(3):167-174.
WANG Songlin, XIANG Hengxue, XU Jinlong, et al. Basic issues and development trends on general synthetic fibers with high functionalization[J]. Journal of Textile Research, 2018,39(3):167-174.
[2] 相恒学, 王世超, 成艳华, 等. 有机/无机杂化材料与多功能纤维研究进展[J]. 中国科学:科学技术, 2014,44(11):1137-1144.
XIANG Hengxue, WANG Shichao, CHENG Yanhua, et al. Organic-inorganic hybrid material and multifunctional fibers[J]. Scientia Sinica Technologica, 2014,44(11):1137-1144.
[3] XIANG H, LI L, CHEN W, et al. Flame retardancy of polyamide 6 hybrid fibers: combined effects of α-zirconium phosphate and ammonium sulfamate[J]. Progress in Natural Science Materials International, 2017,27(3):369-373.
doi: 10.1016/j.pnsc.2017.04.013
[4] PREVORSEK D C, CHIN H B. Intrinsic differences between nylon 6 and nylon 66 industrial fibers: micromechanical and molecular analysis[J]. International Journal of Polymeric Materials & Polymeric Biomaterials, 1994,25(3/4):161-184.
doi: 10.1080/00914039408029336
[5] THANKI P N, SINGH R P. Progress in the area of degradation and stabilization of nylon 66[J]. Journal of Macromolecular Science: Part C, 1998,38(4):595-614.
doi: 10.1080/15583729808546033
[6] 罗玉航, 彭露, 姜锋, 等. 共聚酰胺6/66的合成与表征[J]. 合成纤维工业, 2017,40(3):31-34.
LUO Yuhang, PENG Lu, JIANG Feng, et al. Synjournal and characterization of copolyamide 6/66[J]. China Synthetic Fiber Industry, 2017,40(3):31-34.
[7] MEN Y F, RIEGER J. Temperature dependent wide angle X-ray diffraction studies on the crystalline transition in water saturated and dry polyamide 6/66 copolymer[J]. European Polymer Journal, 2004,40(11):2629-2635.
doi: 10.1016/j.eurpolymj.2004.07.003
[8] 林镇秒. 共聚酰胺6/66制备与成型加工研究[D]. 广州: 华南理工大学, 2016: 1-35.
LIN Zhenmiao. Polymerization and process of copolyamide PA6/66[D]. Guangzhou: South China University of Technology, 2016: 1-35.
[9] 王志亮, 李皆富, 聂静, 等. 水热处理对聚酰胺6纤维结构和性能的影响[J]. 高分子学报, 2016(12):1710-1716.
WANG Zhiliang, LI Jiefu, NIE Jing, et al. Effect of hydrothermal treatment on structure and properties of polyamide 6 fibers[J]. Acta Polymerica Sinica, 2016(12):1710-1716.
[10] XIANG H, NIU Y, LIAO Z, et al. Photoluminescence emission of a stable and well-dispersed unsaturated polyester-co-rare-earth complex[J]. Journal of Applied Polymer Science, 2017,134(36):45253.
doi: 10.1002/app.45253
[11] 梁伯润, 屈凤珍, 潘利华, 等. 高分子物理学[M]. 北京: 中国纺织出版社, 1999: 166-200.
LIANG Borun, QU Fengzhen, PAN Lihua, et al. Physics of Macromolecules[M]. Beijing: China Textile & Apparel Press, 1999: 166-200.
[12] JIA Z Y, CAI Z Q, CHEN J W, et al. High efficiency toughness of aromatic sulfonamide in polyamide 6[J]. Journal of Applied Polymer Science, 2018,135(30):46527.
doi: 10.1002/app.v135.30
[13] LI Y, YANG G. Studies on molecular composites of polyamide 6/polyamide 66[J]. Macromolecular Rapid Communications, 2010,25(19):1714-1718.
doi: 10.1002/(ISSN)1521-3927
[14] 杨坡, 胡国胜, 王标兵. 尼龙6/11共聚物的非等温结晶动力学研究[J]. 中北大学学报(自然科学版), 2008,29(2):156-159.
YANG Po, HU Guosheng, WANG Biaobing. Non-isothermal crystallization kinetics of nylon 6/11 copolymer[J]. Journal of North Univercity of China (Natural Science Edition), 2008,29(2):156-159.
[15] CHEN Z, XIANG H, HU Z, et al. Enhanced mechanical properties of melt-spun bio-based PHBV fibers: effect of heterogeneous nucleation and drawing process[J]. Acta Polymerica Sinica, 2017(7):1121-1129.
[16] 柳毅琨, 邱志成, 金剑, 等. 聚对苯二甲酸乙二醇酯-聚酰胺嵌段共聚物/聚酰胺6共混物的流变性能[J]. 高分子材料科学与工程, 2016,32(4):107-110.
LIU Yikun, QIU Zhicheng, JING Jian, et al. Rheological properties of polyethylene terephthalate ester-polyamide block copolymer/polyamide 6 blends[J]. Polymer Materials Science & Engineering, 2016,32(4):107-110.
[1] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[2] YUAN Wei, YAO Yongbo, ZHANG Yumei, WANG Huaping. Alkaline enzyme treatment process for preparation of Lyocell cellulose pulp [J]. Journal of Textile Research, 2020, 41(07): 1-8.
[3] ZHAO Yaqi, GUO Wenjing, DU Lingzhi, ZHAO Zhenxin, ZHAO Haipeng. Research progress of high relative molecular weight polyacrylonitrile prepared by radical initiators [J]. Journal of Textile Research, 2020, 41(04): 174-180.
[4] GUO Zengge, JIANG Zhaohui, JIA Zhao, PU Congcong, LI Xin, CHENG Bowen. Influence of pressure on rheological behavior of polyethylene terephthalate-polyamide 6 copolymer / polyamide 6 blends [J]. Journal of Textile Research, 2019, 40(12): 27-31.
[5] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
[6] WEI Haijiang, JIANG Li, ZHANG Shunhua. Preperation and properties of heat-resistant phase change wax/polypropylene blends [J]. Journal of Textile Research, 2019, 40(06): 8-13.
[7] . Analysis on components properties of alkali-soluble polyester/polyamide 6 sea island fiber [J]. Journal of Textile Research, 2018, 39(09): 15-21.
[8] . Preparation and performance of pentaerythritol phosphate/zine diethyl phosphate synergistic flame retardant polyamide 6 [J]. Journal of Textile Research, 2018, 39(09): 8-14.
[9] . Preparation and properties of novel modified polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 22-26.
[10] . Testing and characterizing of filament breakage of multifilament yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 29-35.
[11] . Preparation and characterization of sheath-core energy storage and thermo-regulated composite fibers of polyamide 6 [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 1-8.
[12] . Influence of softening treatment on properties of polyester/polyamide 6 hollow segmented-pie ultrafine fiber nonwovens [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 114-119.
[13] . Crystallization behavior of bio-based polyamide 56 fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 7-13.
[14] . Crystallization behavior and mechanical properties of electrospun polyester/palm fiber-based activated carbon composite  [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 6-10.
[15] . Preparation and its sizing properties of starch-poly(methyl aceylate) size catalyzed by horseradish peroxidase [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 69-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!