Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 105-112.doi: 10.13475/j.fzxb.20180902108

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of visible-light-response TiO2 photocatalyst by hydrothermal reduction

SHI Xiaoping, LI Yao, PAN Jiahao, WANG Ting(), WU Liguang   

  1. School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
  • Received:2018-09-10 Revised:2019-07-04 Online:2019-10-15 Published:2019-10-23
  • Contact: WANG Ting E-mail:zjwtwaiting@hotmail.com

Abstract:

Aiing at obtaining a visible-light-response photocatalyst with high contaminants removal in high-salinity wastewater, the surface modification for commercial titania (P25) photocatalyst were studied by hydrothermal reduction, and Ti3+ doped photocatalysts with visible light response were prepared. The influence of changing conditions in hydrothermal reduction on the photodegradation for methyl-orange in high-salinity wastewater using these catalysts was explored under irradiation of visible light. The results show that the hydrothermal reduction can not only remove some oxidized functional groups on the P25 surface, but also forms a heterojunction structure by reducing TiO2 crystals to amorphous TiO2. The introduction of Ti3+ into the catalyst by reducing Ti4+ in TiO2 can expand the visible light response of the catalyst, thereby providing the catalytic activity excited by visible light. The activity of methyl orange of P25 modified by hydrothermal reduction using ethanol is the highest under the excitation of visible light, and the removal rate of 5 h for methyl-orange is up to 95%. In addition, the mild hydrothermal reduction process also ensures the catalyst stability, thus the removal rate of 5 h for methyl-orange exceeds 90% in the repeated photodegradation experiments.

Key words: photocatalyst, Ti3+ self-doping, visible light response, hydrothermal reduction modification, wastewater treatment, methyl orange

CLC Number: 

  • O647

Tab.1

Preparation conditions for different photocatalysts"

催化剂 还原剂 还原方式
P25
H-P25 H2 600 ℃还原
V-P25 抗坏血酸 水热还原
L-P25 柠檬酸钠 水热还原
G-P25 葡萄糖 水热还原
A-P25 乙醇 水热还原

Fig.1

FT-IR spectra of different photocatalysts a—P25; b—H-P25; c—V-P25;d—L-P25; e—G-P25; f—A-P25。"

Fig.2

TEM images of different photocatalysts"

Fig.3

HRTEM images of different photocatalysts"

Fig.4

XRD patterns of different photocatalysts a—P25; b—H-P25; c—V-P25;d—L-P25; e—G-P25; f—A-P25。"

Fig.5

XPS profiles of different photocatalysts a—P25; b—H-P25; c—V-P25;d—L-P25; e—G-P25; f—A-P25。"

Fig.6

XPS profiles of Ti2p in different photocatalysts"

Tab.2

Atomic percentage of C element and valence content of Ti element in different catalysts"

催化剂 还原剂 催化剂中C的
原子分数/%
Ti4+原子
分数/%
Ti3+原子
分数/%
P25 10.5 100 0
H-P25 H2 8.3 0 100
V-P25 抗坏血酸 45.8 100 0
L-P25 柠檬酸钠 42.6 100 0
G-P25 葡萄糖 20.3 98.3 1.7
A-P25 乙醇 9.6 92.5 7.5

Fig.7

Photodegradation curves for methyl-orange in wastewater with high salt concentration by different photocatalysts under irradiation of weak visible light a—P25; b—H-P25; c—V-P25; d—L-P25;e—G-P25; f—A-P25。"

Fig.8

Removal ratio (5 h) for methyl-orange in wastewater with high salt concentration by different photocatalysts under irradiation of weak visible light"

Fig.9

Photodegradation for methyl-orange in wastewater with high salt concentration for 3 cycles using alcohol-P25 catalyst"

Fig.10

TEM image of A-P25 catalyst after photodegradation for 3 cycles"

[1] VOTSI N P, KALLIMANIS A S, PANTIS I D. An environmental index of noise and light pollution at EU by spatial correlation of quiet and unlit areas[J]. Environmental Pollution, 2017,221(2):459-469.
doi: 10.1016/j.envpol.2016.12.015
[2] 魏亮, 陈小光, 黄波, 等. 偶氮染料废水厌氧生物脱色强化[J]. 纺织学报, 2018,39(8):83-87.
WEI Liang, CHEN Xiaoguang, HUANG Bo, et al. Strengthening on anaerobic biological decolorization of azo dyes wastewater[J]. Journal of Textile Research, 2018,39(8):83-87.
[3] 汪风波, 加毅, 孙正, 等. 聚丙烯酸酯浆料废水处理中试研究[J]. 纺织学报, 2019,40(1):108-113.
WANG Fengbo, JIA Yi, SUN Zheng, et al. Pilot study on treatment of polyacrylate sizing wastewater[J]. Journal of Textile Research, 2019,40(1):108-113.
[4] 王来力, 吴雄英, 丁雪梅, 等. 纺织品及服装的工业水足迹核算与评价[J]. 纺织学报, 2017,38(9):162-167.
WANG Laili, WU Xiongying, DING Xuemei, et al. Calculation and assessment of industrial water footprint of textiles and apparel[J]. Journal of Textile Research, 2017,38(9):162-167.
[5] 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018,39(2):112-118.
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater[J]. Journal of Textile Research, 2018,39(2):112-118.
[6] 吴海培, 高晓红, 方婧, 等. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018,39(12):78-83.
WU Haipei, GAO Xiaohong, FANG Jing, et al. Preparation and photocatalytic degradation decoloring of TiO2/reduced graphene oxide composites[J]. Journal of Textile Research, 2018,39(12):78-83.
doi: 10.1177/004051756903900112
[7] CUI Y Q, MA Q L, DENG X Y, et al. Fabrication of Ag-Ag2O/reduced TiO2 nanophotocatalyst and its enhanced visible light driven photocatalytic performance for fegradation of diclofenac dolution[J]. Applied Catalysis B: Environmental, 2017,206:136-145.
doi: 10.1016/j.apcatb.2017.01.014
[8] 李冰蕊, 潘家豪, 王挺, 等. 用吸附相反应技术制备弱光响应的铈掺杂TiO2复合光催化剂[J]. 纺织学报, 2018,39(5):67-73.
LI Bingrui, PAN Jiahao, WANG Ting, et al. Preparation of weak-light-driven TiO2 composite photocatalysts by adsorption phase synjournal[J]. Journal of Textile Research, 2018,39(5):67-73.
[9] 莫壮洪, 黄冬根, 全水清, 等. RGO/TiO2光催化降解2,4-二氯苯氧乙酸研究[J]. 环境科学学报, 2016,36(1):178-184.
MO Zhuanghong, HUANG Donggen, QUAN Shuiqing, et al. Preparation of RGO/TiO2 composites materials for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid[J]. Acta Scientiae Circumstantiae, 2016,36(1):178-184.
[10] XU Y X, LUO Y J, QIAN Q R, et al. Simple fabrication of BiOCl/Bi/P25 composite with enhanced visible light photocatalytic activity[J]. Optical Materials, 2017,72(10):691-696.
doi: 10.1016/j.optmat.2017.07.027
[11] DONG C B, ELDAWUD R, WAGNER A, et al. Hybrid nanocomposites with enhanced visible light photocatalyticability for next generation of clean energy systems[J]. Applied Catalysis A: General, 2016,524:77-84.
doi: 10.1016/j.apcata.2016.06.009
[12] CHEN X, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011,331:746-750.
doi: 10.1126/science.1200448 pmid: 21252313
[13] CHEN J, DING Z, WANG C, et al. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies[J]. ACS Applied Materials & Interfaces, 2016,8:9142-9151.
doi: 10.1021/acsami.6b01183 pmid: 27006999
[14] SAPUTERA W H, MUL G, HAMDY M S. Ti3+-containing titania: synjournal tactics and photocatalytic performance[J]. Catalysis Today, 2015,246:60-66.
doi: 10.1016/j.cattod.2014.07.049
[15] FANG W Z, XING M Y, ZHANG J L. Modifications on reduced titanium dioxide photocatalysts: a review[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017,32:21-39.
doi: 10.1016/j.jphotochemrev.2017.05.003
[16] CHEN X, LIU L, HUANG F. Black titanium dioxide(TiO2) nanomaterials[J]. Chemical Society Reviews, 2015,44(7):1861-1885.
doi: 10.1039/c4cs00330f pmid: 25590565
[17] 许智勇, 李冰蕊, 潘家豪, 等. TiO2复合催化剂弱光催化降解模拟海水中苯酚及其催化活性的影响[J]. 环境科学学报, 2017,37(12):4593-4601.
XU Zhiyong, LI Bingrui, PAN Jiahao, et al. Photodegradation of phenol in artificial seawater by TiO2 composite catalysts under weak UV irradiation[J]. Acta Scientiae Circumstantiae, 2017,37(12):4593-4601.
[18] LI F T, ZHAO Y, HAO Y J, et al. N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity[J]. Journal of Hazardous Materials, 2012(239/240):118-127.
[19] WANG T, ZHU Y C, XU Z Y, et al. Fabrication of weak-room-light-driven TiO2-based catalysts through adsorbed-layer nanoreactor synjournal: enhancing catalytic performance by regulating catalyst structure[J]. Journal of Physical Chemistry, 2016,120:12293-12304.
doi: 10.1021/acs.jpcb.6b09535 pmid: 27934233
[20] XING M Y, FANG W Z, NASIR M, et al. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis[J]. Journal of Catalysis, 2013,297:236-243.
doi: 10.1016/j.jcat.2012.10.014
[21] LI Y J, LI X D, LI J W, et al. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study[J]. Water Research, 2006,40(6):1119-1126.
pmid: 16503343
[22] 邓辉, 蒋新. TiO2/SiO2的制备与光催化降解甲基橙[J]. 纺织学报, 2007,28(9):76-79, 83.
DENG Hui, JIANG Xin. Preparation of TiO2/SiO2 and photo-catalytic degradation of methyl-orange[J]. Journal of Textile Research, 2007,28(9):76-79, 83.
[23] WANG T, JIANG X, WU Y X. Influence of crystallization of nano TiO2 prepared by adsorption phase synjournal on photodegradation of gaseous toluene[J]. Industrial & Engineering Chemistry Research, 2009,48:6224-6228.
[24] LI J R, YANG C H, WU L G, et al. Enhancement on the performance of TiO2 photocatalysts under weak UV light irradiation via adsorbed-layer nanoreactor technique[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2015,481:413-422.
doi: 10.1016/j.colsurfa.2015.05.038
[1] QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile / cellulose acetate / TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14.
[2] CUI Guixin, DONG Yongchun, WANG Peng. Preparation and application properties of wool-Fe complex-based heterogeneous Fenton photocatalysts [J]. Journal of Textile Research, 2019, 40(12): 68-73.
[3] ZHANG Lanhe, ZHANG Mingshuang, GAO Weiwei, LI Zheng, JIA Yanping, GAO Min, LING Liangxiong. Preparation of cobalt aluminate/ceramic honeycomb catalyst and application thereof in dye wastewater treatment [J]. Journal of Textile Research, 2019, 40(03): 125-132.
[4] WANG Fengbo, WANG Jiayi, SUN Zheng, MA Yanxue, LÜ Yingzhi, ZHANG Weifeng, LÜ Yan, LÜ Mingming, CHEN Siyu, LI Yuling, CHEN Xiaoguang. Pilot study on treatment of polyacrylate sizing wastewater [J]. Journal of Textile Research, 2019, 40(01): 108-113.
[5] . Preparation of weak-light-driven TiO2 composite photocatalysts by adsorption phase synthesis [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 67-73.
[6] . Preparation and photocatalysis of acrylic acid grafted cotton cellulose-based TiO2/C photocatalyst [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 75-80.
[7] . Preparation of SBA-3/PEHA and application in wastewater treatment of dyeing [J]. Journal of Textile Research, 2015, 36(07): 83-88.
[8] . Spinning process of cellular photocatalyst fiber/cotton blended yarns and properties thereof [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 32-36.
[9] . Application of Fe modified PAN nano-micron fiber catalyst to degradation of azo dye [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(10): 76-0.
[10] Yan Wang;FU Ya-Qin. Preparation of TiO2 porous film supported on carbon fiber and its photocatalytic performances [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(4): 23-28.
[11] LÜChunyan;LÜTong;SU Qiuhong;HOU Liye;LÜXiaozhuo. Photocatalytic degradation of dyestuff wastewater with supported iron-tetrasulfophthalocyanine [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(05): 100-103.
[12] HUANG Longquan;XU Yinglian;FU Yaqin. Protection study of cotton fabrics with nano-hydroxyapatite in photocatalysis [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(2): 60-63.
[13] SUI Zhihui;ZHAO Xin;LIU Anjun. Preparation of a quaternary ammonium flocculant and its application in treatment of dye house wastewater [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(11): 92-96.
[14] SUI Zhihui;LIU Anjun. Preparation of inorganic compound coagulant and its applicationin the treatment of dyeing effluent [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(11): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!