Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 64-68.doi: 10.13475/j.fzxb.20180902505

• Textile Engineering • Previous Articles     Next Articles

Establishment and application of fabrics attenuated total reflection Fourier transform infrared spectroscopy spectrum library

WEI Zihan, LI Wenxia(), DU Yujun, MA Jingwen, ZHENG Jiahui   

  1. School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2018-09-11 Revised:2019-05-15 Online:2019-08-15 Published:2019-08-16
  • Contact: LI Wenxia E-mail:liwenxia307@163.com

Abstract: Aim

ing at many processes, long time-consuming and polluting the environment when identifying pure textile fabrics by conventional methods and predicting the component contented of blended fabrics, the attenuated total reflection Fourier transform infrared spectroscopy(ATR-IR) spectra of various pure spun and two-component blended fabrics were tested by using Fourier transform infrared spectrometer in combination with the attenuated total reflection (ATR) attachment, and the ATR-IR spectral library was established, which was composed of 205 pure and blended fabric samples of back-to-face as well as warp and weft with identical components. The samples comprising polyester/cotton, polyester/wool, polyester/polyamide, silk/cotton and polyester/viscose blended fabric were selected from 753 samples. 20 samples of unknown fabrics were identified and predicted by using the searching function of the self-built spectrum library, and the accuracy of recognition can reach 100% for pure spun. For blended fabric, the quantitative predicted results were not significantly different from those of national standard method by the T-test analysis in less than 3% error. The prediction greatly facilitates the rapid detection and quantification of samples.

Key words: attenuated total reflection, Fourier transform infrared spectroscopy, nondestructive testing, identification of fabric component

CLC Number: 

  • S941.45

Fig.1

ATR-IR spectra of indigo and indigo dyed denim"

Fig.2

ATR-IR spectra of polyester fabrics with different colors"

Fig.3

ATR-IR spectra of polyester/cotton fabric front and back"

Fig.4

ATR-IR spectra of pure wool fabrics with different textures"

Fig.5

ATR-IR spectra of coated fabrics"

Fig.6

ATR-IR spectra of core-spun yarn fabrics"

Tab.1

Retrieval results of unknown fabric samples from ATR-IR spectral library"

样品
编号

国标法
测定值/%
谱库预
测值/%
匹配
度/%
绝对
误差/
%
相对
误差/
%
1 T 100.00 100.00 98.01 0.00 0.00
2 PAN 100.00 100.00 98.96 0.00 0.00
3 T/C 40.90/59.10 40.50/59.50 96.32 0.40 1.00
4 Md 100.00 100.00 99.17 0.00 0.00
5 Tel 100.00 100.00 98.92 0.00 0.00
6 C 100.00 100.00 99.73 0.00 0.00
7 T/C 63.10/36.90 64.90/35.10 97.27 1.80 2.90
8 T/C 81.80/18.20 79.60/20.40 98.97 1.20 1.50
9 CA 100.00 100.00 98.92 0.00 0.00
10 T/W 31.50/68.50 32.20/67.80 99.39 0.70 2.20
11 S/C 62.00/38.00 62.50/37.50 93.47 0.50 0.80
12 T/W 70.00/30.00 70.10/29.90 98.99 0.10 0.10
13 PP 100.00 100.00 98.77 0.00 0.00
14 Ram 100.00 100.00 98.46 0.00 0.00
15 T/W 56.70/43.30 56.90/43.10 98.07 0.20 1.90
16 T/W 48.30/51.70 49.60/50.40 98.32 1.30 2.70
17 T/N 77.50/22.50 79.00/21.00 98.97 1.50 1.90
18 PE 100.00 100.00 99.83 0.00 0.00
19 T/N 83.30/16.70 83.20/16.80 98.46 0.10 0.10
20 T/R 66.70/33.30 68.80/31.20 99.93 2.10 3.20

Tab.2

True and predicted values of blended fabrics for T-test analysis%"

样品编号 待测织物类别 待测组分 真实值 预测值
3 T/W T 31.50 32.20
7 T/W T 56.70 56.90
8 T/C T 40.90 40.50
10 T/W T 70.10 70.90
11 T/C T 81.80 79.60
12 T/R T 66.70 68.80
15 T/C T 63.10 64.90
16 T/W T 48.30 49.60
20 S/C S 62.00 62.50
[1] 李青山 . 纺织纤维鉴别手册[M].3版. 北京: 中国纺织出版社, 2009: 48-66, 81-92.
LI Qingshan. The Identification Manual of Textile Fibre [M]. 3rd ed. Beijing: China Textile & Apparel Press, 2009: 48-66, 81-92.
[2] 黄红英, 尹齐和 . 傅里叶变换衰减全反射红外光谱法(ATR-FTIR)的原理与应用进展[J]. 中山大学研究生学刊(自然科学、医学版), 2011,32(1):20-31.
HUANG Hongying, YIN Qihe . The principle and application of Fourier transform attenuated total reflectance infrared spectroscopy (ATR-FTIR)[J]. Journal of the Graduate, Zhongshan University (Natural Sciences, Medicine), 2011,32(1):20-31.
[3] 施慧娟, 郭寅龙, 肖峥 , 等. 傅里叶变换衰减全反射红外光谱法化学试剂定性鉴别数据库的建立[J]. 上海计量测试, 2014,41(1):9-13.
SHI Huijuan, GUO Yinlong, XIAO Zheng , et al. Establishment of qualitative identification database of chemical reagent by Fourier transform attenuated total reflectance infrared spectroscopy[J]. Shanghai Measurement Test, 2014,41(1):9-13.
[4] 罗曦芸, 杜一平, 沈美华 , 等. 红外光谱在纤维质文物材料鉴别中的应用研究[J]. 光谱学与光谱分析, 2015,35(1):60-64.
pmid: 25993821
LUO Xiyun, DU Yiping, SHEN Meihua , et al. Application of infrared spectroscopy in identification of fibrous cultural relics[J]. Spectroscopy and Spectral Analysis, 2015,35(1):60-64.
pmid: 25993821
[5] MATHESON C D, MCCOLLUM A J . Characterising native plant resins from australian aboriginal artefacts using ATR-FTIR and GC/MS[J]. Journal of Archaeological Science, 2014,52:116-168.
doi: 10.1016/j.jas.2014.08.016
[6] 吴佩云 . 新型纤维的FTIR-ATR快速定性分析[J]. 毛纺科技, 2010,38(2):48-53.
WU Peiyun . The rapid qualitative analysis of new fibers with FTIR-ATR[J]. Wool Textile Journal, 2010,38(2):48-53.
[7] DEY S K, MUKHERJEE S K, BHATTACHARYA A . An infrared technique for rapid analysis of ramie-acrylic blends[J]. Textile Research Journal, 2003,73:1062-1065.
doi: 10.1177/004051750307301206
[8] LIU Yongliang, HE Zhongqi, SHANKLE Mark , et al. Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy[J]. Industrial Crops & Products, 2016,79:283-286.
[9] 魏峰, 杜锋, 柳畅 , 等. 利用红外光谱进行皮革鉴别的研究[J]. 印染助剂, 2018,35(3):57-60.
WEI Feng, DU Feng, LIU Chang , et al. Study on leather identification by infrared spectroscopy[J]. Textile Auxiliaries, 2018,35(3):57-60.
[10] ROHMAN A, CHEMAN Y B . Application of FTIR spectroscopy for monitoring the stabilities of selected vegetable oils during thermal oxidation[J]. International Journal of Food Properties, 2013,16(7):1594-1603.
doi: 10.1080/10942912.2011.603874
[11] 黄美林, 陈永生, 梁月基 . 国内废旧纺织品回收与再利用现状研究[J]. 纺织导报, 2015(1):26-28.
HUANG Meilin, CHEN Yongsheng, LIANG Yueji . Research on recycling and reuse of waste textiles in China[J]. China Textile Leader, 2015(1):26-28.
[12] 张浩榕, 路云强, 刘丽萍 . 废旧纺织品的来源和国内外回收现状[J]. 现代商贸工业, 2018,39(23):22-23.
ZHANG Haorong, LU Yunqiang, LIU Liping . The Source of waste textiles and the current situation of recycling at home and abroad[J]. Modern Business Trade Industry, 2018,39(23):22-23.
[13] 顾虎, 钟浩, 罗斯杰 . 红外光谱法在新型纺织纤维鉴别中的应用[J]. 现代丝绸科学与技术, 2011,26(6):240-241.
GU Hu, ZHONG Hao, LUO Sijie . Application of infrared spectroscopy in identification of new textile fibers[J]. Modern Silk Science & Technology, 2011,26(6):240-241.
[14] 陶丽珍, 潘志娟, 蒋耀兴 , 等. 基于红外光谱的涤/棉混纺比定量分析[J]. 纺织学报, 2010,31(2):19-23.
TAO Lizhen, PAN Zhijuan, JIANG Yaoxing , et al. Quantitative analysis of polyester/cotton blending ratio based on infrared spectroscopy[J]. Journal of Textile Research, 2010,31(2):19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XING Ming-jie;TANG Dian-hua;YU Chong-wen . Effect of three technologic parameters on air-jet spun yarn strength[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 49 -51 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(04): 24 -25 .
[3] YANG Ju-ping. Cross-linking flocculants of high molecule and high concentration[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 63 -64 .
[4] ZHU Zhi-feng;QIAO Zhi-yong. Causes and elimination of the foams within sizing pastes[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(7): 86 -89 .
[5] LIN Jian-long;WANG Xiao-bei;GU Xiang. Analysis and design of new model thread-taking-up mechanism of the computerized embroidery machine[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(12): 105 -108 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(02): 19 -22 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(02): 46 -48 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 1993, 14(03): 19 -21 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 1987, 8(02): 55 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1986, 7(06): 11 -16 .