Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 20-26.doi: 10.13475/j.fzxb.20180903107

• Fiber Materials •     Next Articles

Structure and properties of braided tube reinforced polylactic acid hollow fiber membranes

XIAO Chuanmin1,2, XIAO Changfa1,2(), ZHANG Tai2, WANG Xinya1,2   

  1. 1. School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-09-13 Revised:2019-03-10 Online:2019-08-15 Published:2019-08-16
  • Contact: XIAO Changfa E-mail:xiaochangfa@163.com

Abstract:

In order to prepare polylactic acid (PLA) hollow fiber membranes with high strength and high separation precision, homogenous and heterogeneous braided tube reinforced PLA hollow fiber membranes were prepared by concentric circular spinning technique. The influences of polyethylene glycol (PEG) molecular weight on the structure and properties of the homogenous reinforced membranes were investigated. Moreover, the influences of homogenous and heterogeneous braided tubes on the interfacial bonding properties were also studied by physically back washing and ultrasonically water bathing shaking.The results show that with the increase of the PEG molecular weight, the surface pores size of the membranes decreases. In addition, the permeate flux of the membranes increases firstly and then decreases, and the bovine serum albumin rejection ratio increases first and then stabilizes with the increase of the PEG molecular weight. It is also found that the interface adhesion between homogeneous braid tube and PLA hollow fiber membranes are better than the heterogeneous ones.

Key words: polylactic acid, polyethylene glycol, braided tube reinforcement, hollow fiber membrane, interfacial bonding

CLC Number: 

  • TQ028.8

Fig.1

Spinning process of reinforced PLA hollow fiber membranes"

Tab.1

Composition of reinforced PLA hollow fiber membranes"

试样
编号
PLA质量
分数/%
PEG相对
分子质量
PEG质量
分数/%
NMP质量
分数/%
编织管
种类
M0 18 82 PLA
M1 18 400 5 77 PLA
M2 18 2 000 5 77 PLA
M3 18 10 000 5 77 PLA
M4 18 20 000 5 77 PLA
M5 18 10 000 5 77 PET

Fig.2

Pure water flux meter device schematic"

Fig.3

Effect of PEG molecular weight on shear viscosity of casting solution"

Fig.4

Effect of PEG molecular weight on structure of reinforced PLA hollow fiber membranes. (a) Cross-section; (b) Cross-section local enlargement; (c) Surface"

Tab.2

Test results of thickness and diameter of reinforced PLA hollow fiber membranesmm"

试样编号 内径 外径 分离层厚度
M0 0.81 2.026 0.118
M1 0.81 2.004 0.107
M2 0.81 1.986 0.098
M3 0.81 1.978 0.094
M4 0.81 1.970 0.090

Fig.5

Effect of PEG molecular weight on porosity and contact angle of reinforced PLA hollow fiber membranes"

Fig.6

Effect of PEG molecular weight on permeate flux(a) and BSA rejection(b) ratio of reinforced PLA hollow fiber membranes"

Fig.7

Stress-strain curves of reinforced PLA hollow fiber membranes"

Fig.8

Cross-section structure of homogeneous (a) and heterogeneous (b) reinforced PLA hollow fiber membranes"

Fig.9

Effect of ultrasonic water bath oscillation on pore size distribution of homogeneous and heterogeneous reinforced PLA hollow fiber membranes"

Fig.10

Effect of ultrasonic water bath oscillation on pure water flux (a) and BSA rejection ratio (b) of reinforced PLA hollow fiber membranes"

[1] 徐德志, 相波, 邵建颖 , 等. 膜技术在工业废水处理中的应用研究进展[J]. 工业水处理, 2006,26(4):1-4.
XU Dezhi, XIANG Bo, SHAO Jianying , et al. Research progress in application of membrane technology in industrial wastewater treatment[J]. Industrial Water Treatment, 2006,26(4):1-4.
[2] GUPTA B, REVAGADE N, HILBORN J . Poly(lactic acid) fiber: an overview[J]. Progress in Polymer Science, 2007,32(4):455-482.
doi: 10.1016/j.progpolymsci.2007.01.005
[3] YUAN X, LI W, ZHU Z , et al. Thermo-responsive PVDF/PSMA composite membranes with micro/nanoscale hierarchical structures for oil/water emulsion separation[J]. Colloids & Surfaces A: Physico-chemical & Engineering Aspects, 2017,516:305-316.
[4] ZUO J, BONYADI S, CHUNG T S . Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation[J]. Journal of Membrane Science, 2016,497:239-247.
doi: 10.1016/j.memsci.2015.09.038
[5] MINBU H, OCHIAI A, KAWASE T , et al. Preparation of poly(L-lactic acid) microfiltration membranes by a nonsolvent-induced phase separation method with the aid of surfactants[J]. Journal of Membrane Science, 2015,479:85-94.
doi: 10.1016/j.memsci.2015.01.021
[6] CHEN S, HE Z, XU G , et al. Fabrication and characterization of modified nanofibrous poly(L-lactic acid) scaffolds by thermally induced phase separation technique and aminolysis for promoting cyctocompatibility[J]. Journal of Biomaterials Science Polymer Edition, 2016,27(10):1058-1068.
doi: 10.1080/09205063.2016.1180830 pmid: 27095503
[7] CARFI P F, LA C V, BRUCATO V . Morphology and thermal properties of foams prepared via thermally induced phase separation based on polylactic acid blends[J]. Journal of Cellular Plastics, 2012,48(5):399-407.
doi: 10.1177/0021955X12452180
[8] FAN Z, XIAO C, LIU H , et al. Preparation and performance of homogeneous braid reinforced cellulose acetate hollow fiber membranes[J]. Cellulose, 2015,22(1):695-707.
doi: 10.1007/s10570-014-0466-1
[9] QUAN Q, XIAO C, LIU H , et al. Preparation and characterization of braided tube reinforced polyacrylonitrile hollow fiber membranes[J]. Journal of Applied Polymer Science, 2015,132(14):1-10.
[10] 刘海亮, 肖长发, 黄庆林 , 等. 增强型中空纤维多孔膜研究进展[J]. 纺织学报, 2015,36(9):154-161.
LIU Hailiang, XIAO Changfa, HUANG Qinglin , et al. Research progress of reinforced hollow fiber porous membranes[J]. Journal of Textile Research, 2015,36(9):154-161.
[11] FAN Z W, XIAO C F, LIU H L , et al. Structure design and performance study on braid-reinforced cellulose acetate hollow fiber membranes[J]. Journal of Membrane Science, 2015,486:248-256.
doi: 10.1016/j.memsci.2015.03.066
[12] GAO A, LIU F, SHI H , et al. Controllable transition from finger-like pores to inter-connected pores of PLLA membranes[J]. Journal of Membrane Science, 2015,478:96-104.
doi: 10.1016/j.memsci.2015.01.004
[13] YOO S H, KIM J H, JHO J Y , et al. Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight[J]. Journal of Membrane Science, 2004,236(1):203-207.
doi: 10.1016/j.memsci.2004.02.017
[14] LIU H, XIAO C, HUANG Q , et al. Preparation and interface structure study on dual-layer polyvinyl chloride matrix reinforced hollow fiber membranes[J]. Journal of Membrane Science, 2014,472(15):210-221.
doi: 10.1016/j.memsci.2014.08.050
[15] CHAKRABARTY B, GHOSHAL A K, PURKAIT M K . Effect of molecular weight of PEG on membrane morphology and transport properties[J]. Journal of Membrane Science, 2008,309(1):209-221.
doi: 10.1016/j.memsci.2007.10.027
[16] 凡祖伟 . 编织管增强型醋酸纤维素中空纤维膜研究[D]. 天津: 天津工业大学, 2016: 31-49.
FAN Zuwei . Study on braided tube reinforced cellulose acetate hollow fiber membranes[D]. Tianjin: Tianjin Polytechnic University, 2016: 31-49.
[17] MORIYA A, MARUYAMA T, OHMUKAI Y , et al. Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods[J]. Journal of Membrane Science, 2009,342(1):307-312.
doi: 10.1016/j.memsci.2009.07.005
[18] 权全 . 增强型聚丙烯腈中空纤维膜结构设计与性能研究[D]. 天津:天津工业大学, 2016: 4-6.
QUAN Quan . Structural design and properties of reinforced polyacrylonitrile hollow fiber membrane[D]. Tianjin: Tianjin Polytechnic University, 2016: 4-6.
[19] MASSELIN I, CHASSERAY X, DURAND B L , et al. Effect of sonication on polymeric membranes[J]. Journal of Membrane Science, 2001,181(2):213-220.
doi: 10.1016/S0376-7388(00)00534-2
[1] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[2] MEI Shuo, LI Jinchao, LU Shiyan, XIAO Changfa, YANG Yong, FENG Xiangwei. Preparation and properties of high strength polyvinyl chloride hollow fiber membrane [J]. Journal of Textile Research, 2020, 41(09): 16-20.
[3] HAN Ye, ZHANG Hui, ZHU Guoqing, WU Hailiang. Effect of polyethylene glycol on photocatalytic properties of polyethylene terephthalate fibers treated with titanium sulfate under hydrothermal conditions  [J]. Journal of Textile Research, 2019, 40(10): 33-41.
[4] ZHANG Heng, ZHEN Qi, LIU Yong, SONG Weimin, LIU Rangtong, ZHANG Yifeng. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure [J]. Journal of Textile Research, 2019, 40(09): 28-34.
[5] LI Nana, LU Qingchen, YIN Weiwei, XIAO Changfa. Influence of cooling temperature on structure and properties of polyvinylidene fluoride/ultrahigh-molecular-weight polyethylene blends hollow fiber membrane [J]. Journal of Textile Research, 2019, 40(07): 8-12.
[6] ZHANG Heng, SHENTU Baoqing, ZHANG Wei, ZHANG Yifeng, CUI Guoshi. Structure and liquid retention properties of polyethylene glycol/ polypropylene melt blown nonwoven with bionic vein networks [J]. Journal of Textile Research, 2019, 40(05): 18-23.
[7] MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO [J]. Journal of Textile Research, 2019, 40(05): 12-17.
[8] DONG Hao, ZHANG Liping, LIU Yining, WANG Lejun, LIU Yayun, FU Shaohai. Preparation and properties of modified carbon black for dope dyeing of polylactic acid fiber [J]. Journal of Textile Research, 2019, 40(05): 64-69.
[9] . Preparation and properties of polylactic acid / polypropylene blend fiber by melt spinning#br# [J]. Journal of Textile Research, 2019, 40(03): 8-12.
[10] WU Qiqi, LI Min, LIU Yining, WANG Lejun, ZHANG Liping, FU Shaohai. Dyeing properties of polylactic acid fabric by carrier dyeing method [J]. Journal of Textile Research, 2019, 40(01): 79-83.
[11] . Fabrication of polylactic acid tree-like nanofiber membrane and its application in filtration [J]. Journal of Textile Research, 2018, 39(12): 139-144.
[12] . Synthesis kinetics of polyester by organic titanium-silicon catalysts [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 1-7.
[13] . Design on printing parameters of flexible polylactic acid used in 3D printing fabric texture [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 38-42.
[14] . Glass fiber reinforced polylactic acid composites based on 3D printing technology [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 13-18.
[15] . Study on the concentration and recovery of cellulose solvent N-methylmorpholine-N-oxide by vacuum menbrane distillation [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 16-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 48 -49 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(10): 45 -46 .
[3] HUANG Chen;ANGLi′na;AN Xiaojian;U Zhaofang;E Yindi. Preparation and characterization of cotton nonwovens dipped by sericin[J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(11): 52 -55 .
[4] XU Yun-hui;LIN Hong;CHEN Yu-yue . Aggregated structure of cotton fiber oxidised selectively with sodium periodate[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(11): 1 -5 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2002, 23(03): 32 -33 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1986, 7(06): 34 -38 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2001, 22(05): 25 -26 .
[8] ZHANG Jianfei;SHAO Gaiqin. Effect of ultraviolet on Phanerochaete chrysosporium for decomposing caprolactam and degrading polyamide 6[J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(1): 9 -13 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 1990, 11(07): 4 -7 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1982, 3(11): 52 -54 .