Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 33-41.doi: 10.13475/j.fzxb.20180905309
• Fiber Materials • Previous Articles Next Articles
HAN Ye1, ZHANG Hui1(), ZHU Guoqing2, WU Hailiang1
CLC Number:
[1] |
PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis B: Environmental, 2012,125(33):331-349.
doi: 10.1016/j.apcatb.2012.05.036 |
[2] | NASIRIAN M, LIN Y P, BUSTILLO C F, et al. Enhan- cement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review[J]. International Journal of Environmental Science & Technology, 2018,15(9):2009-2032. |
[3] |
ESPINO-ESTEVEZ M R, FERNANDEZ-RODRIGU-EZ C, GONZALEZ-DIAZ O M, et al. Enhancement of stability and photoactivity of TiO2, coatings on annular glass reactors to remove emerging pollutants from waters[J]. Chemical Engineering Journal, 2015,279:488-497.
doi: 10.1016/j.cej.2015.05.038 |
[4] | YANG X L, ZHU L, YANG L M, et al. Preparation and photocatalytic activity of neodymium doping titania loaded to silicon dioxide[J]. Transactions of Nonferrous Metals Society of China, 2011,21(2):335-339. |
[5] |
KUWAHARA Y, YAMASHITA H. Efficient photo- catalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials[J]. Journal of Materials Chemistry, 2011,21(8):2407-2416.
doi: 10.1039/C0JM02741C |
[6] | TAHIR M, AMIN N A S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites[J]. Applied Catalysis B: Environmental, 2013,142(5):512-522. |
[7] |
PANT B, PANT H R, PARK M, et al. Electrospun CdS-TiO2 doped carbon nanofibers for visible-light-induced photocatalytic hydrolysis of ammonia borane[J]. Catalysis Communications, 2014,50(14):63-68.
doi: 10.1016/j.catcom.2014.03.002 |
[8] |
KIM C, LEE J, LEE S. TiO2 nanoparticle sorption to sand in the presence of natural organic matter[J]. Environmental Earth Sciences, 2015,73(9):5585-5591.
doi: 10.1007/s12665-014-3812-6 |
[9] |
BOSTJAN E, PETRA H, KATJA P, et al. Glass fiber-supported TiO2, photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol a and its analogs[J]. Applied Catalysis B: Environmental, 2016,183:149-158.
doi: 10.1016/j.apcatb.2015.10.033 |
[10] | YIN B, WANG J T, WEI X U, et al. Preparation of TiO2/mesoporous carbon composites and their photoca- talytic performance for methyl orange degradation[J]. Carbon, 2013,56(1):393-394. |
[11] | LI Y, GUO Y, LI S, et al. Efficient visible-light photo- catalytic hydrogen evolution over platinum supported titanium dioxide nanocomposites coating up-conversion luminescence agent (Er3+: Y3Al5O12/Pt-TiO2)[J]. Intern- ational Journal of Hydrogen Energy, 2015,40(5):2132-2140. |
[12] | 杨璐, 张辉. 水热法制备纳米TiO2改性锦纶织物[J]. 纺织学报, 2011,32(11):83-89. |
YANG Lu, ZHANG Hui. Modification of polyamide fabric nano-TiO2 prepared by low temperature hydrothermal method[J]. Journal of Textile Research, 2011,32(11):83-89.
doi: 10.1177/004051756203200115 |
|
[13] | 冯静, 杜英英, 邢彦军. 钨杂二氧化钛负载棉织物的微波法制备及光催化性能[J]. 纺织学报, 2014,35(7):88-93. |
FENG Jing, DU Yingying, XING Yanjun. Microwave- assisted low temperature in-situ and coating of tungsten-doped TiO2 onto cotton fabric and photocatalytic performance coated fabric[J]. Journal of Textile Research, 2014,35(7):88-93.
doi: 10.1177/004051756503500114 |
|
[14] |
KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric[J]. Applied Surface Science, 2015,332:665-673.
doi: 10.1016/j.apsusc.2015.01.184 |
[15] |
PROROKOVA N P, KUMEEVA T Y, AGAFONOV A V, et al. Modification of polyester fabrics with nanosized titanium dioxide to impart photoactivity[J]. Inorganic Materials Applied Research, 2017,8(5):696-703.
doi: 10.1134/S2075113317050264 |
[16] |
MOMTAZER M, PAKDEL E, BEHZADNIA A. Novel feature of nano-titanium dioxide on textiles: antifelting and antibacterial wool[J]. Journal of Applied Polymer Science, 2011,121(6):3407-3413.
doi: 10.1002/app.33858 |
[17] | 郭晓玲, 张彤, 曹陈华, 等. 负载掺杂纳米TiO2耐久抗菌织物的制备与表征[J]. 纺织学报, 2017,38(6):163-168. |
GUO Xiaoling, ZHANG Tong, CAO Chenhua, et al. Preparation and characterization of durable antibacterial fabric loaded with doped nano-TiO2[J]. Journal of Textile Research, 2017,38(6):163-168. | |
[18] | 李瑞雪, 沈小林, 张兴亚, 等. 原位生成二氧化钛对棉纤维抗紫外线性能的影响[J]. 纺织学报, 2016,37(3):78-81. |
LI Ruixue, SHEN Xiaolin, ZHAG Xingya, et al. Study on anti-UV property of cotton fibers by in-situ generation of TiO2[J]. Journal of Textile Research, 2016,37(3):78-81. | |
[19] | 贾琳, 王西贤, 张海霞, 等. 聚丙烯腈/二氧化钛纳米纤维的紫外线防护性能[J]. 纺织学报, 2017,38(7):18-22. |
JIA Lin, WANG Xixian, ZHANG Haixia, et al. Ultraviolet protective properties of prolyacylonitrile/TiO2 nanofiber[J]. Journal of Textile Research, 2017,38(7):18-22. | |
[20] |
MIRJALILI M, KARIMI L, BARARITARI A. Investi- gating the effect of corona treatment on self-cleaning property of finished cotton fabric with nano titanium dioxide[J]. Journal of the Textile Institute, 2015,106(6):621-628.
doi: 10.1080/00405000.2014.932058 |
[21] | 孟金凤, 孟家光, 张琳玫, 等. 毛涤西服面料的自清洁性能[J]. 纺织学报, 2015,36(10):107-112. |
MENG Jinfeng, MENG Jiaguang, ZHANG Linmei, et al. Nanometer self-cleaning properties of wool/polyester blended suit fabric[J]. Journal of Textile Research, 2015,36(10):107-112. | |
[22] | ZHANG H, LI F, ZHU H. Immobilization of TiO2nano- particles on PET fabric modified with silane; coupling agent by low temperature hydrothermal method[J]. Fibers & Polymers, 2013,14(1):43-51. |
[23] |
LUAN S, QU D, AN L, et al. Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment[J]. Science Bulletin, 2018,63(11):683-690.
doi: 10.1016/j.scib.2018.04.002 |
[24] |
NEMATI S H, HADJIZADEH A. Gentamicineluting titanium dioxide nanotubes grown on the ultrafine- grained titanium[J]. Aaps Pharmscitech, 2017,18(6):1-8.
doi: 10.1208/s12249-016-0685-x |
[25] |
LEE M J, KIM J H, PARK Y T. Surface modification reaction of photocatalytic titanium dioxide with triethoxysilane for improving dispersibility[J]. Bulletin- Korean Chemical Society, 2010,31(5):1275-1279.
doi: 10.5012/bkcs.2010.31.5.1275 |
[26] | WU Z W, ZHANG L J, ZHAI X J, et al. Preparation and photocatalytic activity analysis of nanometer TiO2 modified by surfactant[J]. Nanomaterials and Nanotec- hnology, 2018(8):1-8. |
[27] | VOROKH A S. Scherrer formula: estimation of error in determining small nanoparticle size[J]. Nanosystems: Physics, Chemistry, Mathematics, 2018,9(3):364-369. |
[28] | YANG Y, ZHANG T, LING L, et al. Quick and facile preparation of visible light-driven TiO2 photocatalyst with high absorption and photocatalytic activity[J]. Scientific Reports, 2014,4(1):1-6. |
[29] | 吉强, 王晓, 戚俊然, 等. 光接枝丙烯酸棉纤维素基TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017,38(10):75-80. |
JI Qiang, WANG Xiao, QI Junran, et al. Preparation and photocatalysis of acrylic grafted cotton cellulose-based TiO2/C photocatalyst[J]. Journal of Textile Research, 2017,38(10):75-80. | |
[30] |
XIANG Q J, YU J G. Photocatalytic activity of hierarc- hical flower-like TiO2 superstructures with dominant {001} facets[J]. Chinese Journal of Catalysis, 2011,32(3/4):525-531.
doi: 10.1016/S1872-2067(10)60186-6 |
[31] |
RAHIM S, GHAMSARI M S, RADIMAN S. Surface modification of titanium oxide nanocrystals with PEG[J]. Scientia Iranica, 2012,19(3):948-953.
doi: 10.1016/j.scient.2012.03.009 |
[32] |
ZHOU C H, ZHAO X Z, YANG B C, et al. Effect of poly (ethylene glycol) on coarsening dynamics of titanium dioxide nanocrystallites in hydrothermal reaction and the application in dye sensitized solar cells[J]. Journal of Colloid & Interface Science, 2012,374(1):9-17.
pmid: 22405580 |
[33] |
WANG Y, ZHANG L, DENG K, et al. Low temperature synjournal and photocatalytic activity of rutile TiO2 nanorod superstructures[J]. Journal of Physical Chemistry C, 2007,111(6):2709-2714.
doi: 10.1021/jp066519k |
[34] | GROEN J C, PEFFER L A A, JAVIER P. Pore size determination in modified micro- and mesoporous materials. pitfalls and limitations in gas adsorption data analysis[J]. Microporous & Mesoporous Materials, 2003,60(1):1-17. |
[35] |
LI S, CHEN J, ZHENG F, et al. Synjournal of the double-shell anatase-rutile TiO2 hollow spheres with enhanced photocatalytic activity[J]. Nanoscale, 2013,5(24):12150-12155.
pmid: 24177374 |
[36] |
RODRIGUEZ J L, POZNYAK T, VALENZEUELA M A, et al. Surface interactions and mechanistic studies of 2,4-dichlorophenoxyacetic acid degradation by catalytic ozonation in presence of Ni/TiO2[J]. Chemical Engineering Journal, 2013,222(15):426-434.
doi: 10.1016/j.cej.2013.02.086 |
[37] |
NANAYAKKARA C E, JAYAWEERA P M, RUBASI- NGHEGE G, et al. Surface photochemistry of adsorbed nitrate: the role of adsorbed water in the formation of reduced nitrogen species on α-Fe2O3 particle surfaces[J]. Journal of Physical Chemistry A, 2014,118(1):158-166.
doi: 10.1021/jp409017m |
[38] |
LALITHA K, REDDY J K, KUMARI V D, et al. Conti- nuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: water mixtures under solar irradiation: a structure-activity correlation[J]. International Journal of Hydrogen Energy, 2010,35(9):3991-4001.
doi: 10.1016/j.ijhydene.2010.01.106 |
[39] |
KUBALA-KUKUS A, BANAS D, STABRAWA I, et al. Analysis of Ti and TiO2 nanolayers by total reflection X-ray photoelectron spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018,145(1):43-50.
doi: 10.1016/j.sab.2018.03.012 |
[40] | XU H, SONG Z, WANG X, et al. Synjournal of well- dispersed TiO2 nanoparticles by a sol-hydrothermal method[J]. Asian Journal of Chemistry, 2011,23(5):2339-2342. |
[41] | YANG H, YANG Z J, HAN C, et al. Photocatalyic activity of Fe-doped diopside[J]. Transactions of Nanoferrous Metals Society of China, 2012,22(12):3053-3058. |
[42] | WANG B, DUAN Y, ZHANG J. Titanium dioxide nanoparticles-coated aramid fiber showing enhanced interfacial strength and UV resistance properties[J]. Materials & Design, 2016,103:330-338. |
[43] | CAO K C, ZOBERBIER T, BISKUPEK J, et al. Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts[J]. Nature Communications, 2018(9):1-10. |
|