Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 33-41.doi: 10.13475/j.fzxb.20180905309

• Fiber Materials • Previous Articles     Next Articles

Effect of polyethylene glycol on photocatalytic properties of polyethylene terephthalate fibers treated with titanium sulfate under hydrothermal conditions

HAN Ye1, ZHANG Hui1(), ZHU Guoqing2, WU Hailiang1   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Suzhou Fiber Inspection Institute, Suzhou, Jiangsu 215100, China
  • Received:2018-09-20 Revised:2019-06-17 Online:2019-10-15 Published:2019-10-23
  • Contact: ZHANG Hui E-mail:hzhangw532@xpu.edu.cn

Abstract:

In order to investigate the effect of TiO2 particle sizes on the photocatalytic activity of TiO2-coated polyethylene terephthalate (PET) fibers, nano-scaled TiO2 particles were loaded on the surface of PET fibers treated with titanium sulfate, urea and polyethylene glycol as raw materials by a hydrothermal method. The photocatalytic degradation of methylene blue (MB) dye solution by the TiO2-coated PET fibers was measured under ultraviolet (UV) irradiation. The reasons for the improvement of photoactivity by using polyethylene glycol (PEG) as a dispersing agent were studied by scanning electron microscope, laser particle size analyzer, X-ray diffraction, and so on. It is found that the particle size and loading amount of TiO2 nanoparticles loaded on PET fibers are affected by the dosage and molecular weight of PEG used. In comparison with the TiO2-coated PET fibers without adding PEG, the TiO2-coated PET fibers treated with 12.5 mL/L of PEG400 can efficiently photodegrade the MB dye solution due to the small average particle size of 9.4 nm TiO2 particles. In addition, the total organic carbon(TOC) contents of methylene blue dye aqueous solution in the presence of TiO2-coated PET fibers decrease from 0.001 11% to 0.000 46% after being exposed to 120 min of UV irradiation.

Key words: dyeing wastewater, polyethylene terephthalte fiber, nano-scaled TiO2, polyethylene glycol, methylene blue dye, photocatalytic degradation

CLC Number: 

  • TS151

Fig.1

SEM images of TiO2-coated polyethylene terephthalate treated with different dosage and molecular weight of PEG (×2 000). (a)Untreated polyester;(b)1#;(c)2#;(d)3#;(e)4#;(f)5#;(g)6#;(h)7#"

Fig.2

Distribution curve of TiO2 particles"

Fig.3

X-ray patterns of TiO2 nanoparticles"

Fig.4

N2 adsorption-desorption isotherms of TiO2 nanoparticles"

Fig.5

Pore-size distribution profile of TiO2 nanoparticles"

Tab.1

Results of XPS elemental analysis of TiO2 coated PET fibers"

样品
编号
元素 结合能/
eV
半高宽/
eV
原子百分比/
%
1# O1s 532.0 3.030 20.31
Ti2p 463.1 0.258 0.29
N1s 405.9 0.222 0.31
C1s 284.4 1.951 79.09
3# O1s 531.7 2.891 23.63
Ti2p 458.8 1.492 0.49
N1s 399.0 0.265 0.68
C1s 283.6 2.208 75.20

Fig.6

XPS survey spectra of PET fibers treated without PEG(1#)and with 1.0 mL PEG400(3#). (a) XPS Spectra of 1# and 3# samples; (b) C1s spectra of 1# sample;(c) N1s spectra of 1# sample; (d) O1s spectra of 1# sample;(e) Ti2p spectra of 1# sample; (f) C1s spectra of 3# sample; (g) N1s spectra of 3# sample; (h) O1s spectra of 3# sample; (i) Ti2p spectra of 3# sample"

Fig.7

Diffuse reflectance spectra of PET treated without PEG and with 1.0 mL PEG400"

Fig.8

Kinetic fits of TiO2-coated PET for photodegradation of methylene blue dye under UV irradiation"

[1] PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis B: Environmental, 2012,125(33):331-349.
doi: 10.1016/j.apcatb.2012.05.036
[2] NASIRIAN M, LIN Y P, BUSTILLO C F, et al. Enhan- cement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review[J]. International Journal of Environmental Science & Technology, 2018,15(9):2009-2032.
[3] ESPINO-ESTEVEZ M R, FERNANDEZ-RODRIGU-EZ C, GONZALEZ-DIAZ O M, et al. Enhancement of stability and photoactivity of TiO2, coatings on annular glass reactors to remove emerging pollutants from waters[J]. Chemical Engineering Journal, 2015,279:488-497.
doi: 10.1016/j.cej.2015.05.038
[4] YANG X L, ZHU L, YANG L M, et al. Preparation and photocatalytic activity of neodymium doping titania loaded to silicon dioxide[J]. Transactions of Nonferrous Metals Society of China, 2011,21(2):335-339.
[5] KUWAHARA Y, YAMASHITA H. Efficient photo- catalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials[J]. Journal of Materials Chemistry, 2011,21(8):2407-2416.
doi: 10.1039/C0JM02741C
[6] TAHIR M, AMIN N A S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites[J]. Applied Catalysis B: Environmental, 2013,142(5):512-522.
[7] PANT B, PANT H R, PARK M, et al. Electrospun CdS-TiO2 doped carbon nanofibers for visible-light-induced photocatalytic hydrolysis of ammonia borane[J]. Catalysis Communications, 2014,50(14):63-68.
doi: 10.1016/j.catcom.2014.03.002
[8] KIM C, LEE J, LEE S. TiO2 nanoparticle sorption to sand in the presence of natural organic matter[J]. Environmental Earth Sciences, 2015,73(9):5585-5591.
doi: 10.1007/s12665-014-3812-6
[9] BOSTJAN E, PETRA H, KATJA P, et al. Glass fiber-supported TiO2, photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol a and its analogs[J]. Applied Catalysis B: Environmental, 2016,183:149-158.
doi: 10.1016/j.apcatb.2015.10.033
[10] YIN B, WANG J T, WEI X U, et al. Preparation of TiO2/mesoporous carbon composites and their photoca- talytic performance for methyl orange degradation[J]. Carbon, 2013,56(1):393-394.
[11] LI Y, GUO Y, LI S, et al. Efficient visible-light photo- catalytic hydrogen evolution over platinum supported titanium dioxide nanocomposites coating up-conversion luminescence agent (Er3+: Y3Al5O12/Pt-TiO2)[J]. Intern- ational Journal of Hydrogen Energy, 2015,40(5):2132-2140.
[12] 杨璐, 张辉. 水热法制备纳米TiO2改性锦纶织物[J]. 纺织学报, 2011,32(11):83-89.
YANG Lu, ZHANG Hui. Modification of polyamide fabric nano-TiO2 prepared by low temperature hydrothermal method[J]. Journal of Textile Research, 2011,32(11):83-89.
doi: 10.1177/004051756203200115
[13] 冯静, 杜英英, 邢彦军. 钨杂二氧化钛负载棉织物的微波法制备及光催化性能[J]. 纺织学报, 2014,35(7):88-93.
FENG Jing, DU Yingying, XING Yanjun. Microwave- assisted low temperature in-situ and coating of tungsten-doped TiO2 onto cotton fabric and photocatalytic performance coated fabric[J]. Journal of Textile Research, 2014,35(7):88-93.
doi: 10.1177/004051756503500114
[14] KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric[J]. Applied Surface Science, 2015,332:665-673.
doi: 10.1016/j.apsusc.2015.01.184
[15] PROROKOVA N P, KUMEEVA T Y, AGAFONOV A V, et al. Modification of polyester fabrics with nanosized titanium dioxide to impart photoactivity[J]. Inorganic Materials Applied Research, 2017,8(5):696-703.
doi: 10.1134/S2075113317050264
[16] MOMTAZER M, PAKDEL E, BEHZADNIA A. Novel feature of nano-titanium dioxide on textiles: antifelting and antibacterial wool[J]. Journal of Applied Polymer Science, 2011,121(6):3407-3413.
doi: 10.1002/app.33858
[17] 郭晓玲, 张彤, 曹陈华, 等. 负载掺杂纳米TiO2耐久抗菌织物的制备与表征[J]. 纺织学报, 2017,38(6):163-168.
GUO Xiaoling, ZHANG Tong, CAO Chenhua, et al. Preparation and characterization of durable antibacterial fabric loaded with doped nano-TiO2[J]. Journal of Textile Research, 2017,38(6):163-168.
[18] 李瑞雪, 沈小林, 张兴亚, 等. 原位生成二氧化钛对棉纤维抗紫外线性能的影响[J]. 纺织学报, 2016,37(3):78-81.
LI Ruixue, SHEN Xiaolin, ZHAG Xingya, et al. Study on anti-UV property of cotton fibers by in-situ generation of TiO2[J]. Journal of Textile Research, 2016,37(3):78-81.
[19] 贾琳, 王西贤, 张海霞, 等. 聚丙烯腈/二氧化钛纳米纤维的紫外线防护性能[J]. 纺织学报, 2017,38(7):18-22.
JIA Lin, WANG Xixian, ZHANG Haixia, et al. Ultraviolet protective properties of prolyacylonitrile/TiO2 nanofiber[J]. Journal of Textile Research, 2017,38(7):18-22.
[20] MIRJALILI M, KARIMI L, BARARITARI A. Investi- gating the effect of corona treatment on self-cleaning property of finished cotton fabric with nano titanium dioxide[J]. Journal of the Textile Institute, 2015,106(6):621-628.
doi: 10.1080/00405000.2014.932058
[21] 孟金凤, 孟家光, 张琳玫, 等. 毛涤西服面料的自清洁性能[J]. 纺织学报, 2015,36(10):107-112.
MENG Jinfeng, MENG Jiaguang, ZHANG Linmei, et al. Nanometer self-cleaning properties of wool/polyester blended suit fabric[J]. Journal of Textile Research, 2015,36(10):107-112.
[22] ZHANG H, LI F, ZHU H. Immobilization of TiO2nano- particles on PET fabric modified with silane; coupling agent by low temperature hydrothermal method[J]. Fibers & Polymers, 2013,14(1):43-51.
[23] LUAN S, QU D, AN L, et al. Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment[J]. Science Bulletin, 2018,63(11):683-690.
doi: 10.1016/j.scib.2018.04.002
[24] NEMATI S H, HADJIZADEH A. Gentamicineluting titanium dioxide nanotubes grown on the ultrafine- grained titanium[J]. Aaps Pharmscitech, 2017,18(6):1-8.
doi: 10.1208/s12249-016-0685-x
[25] LEE M J, KIM J H, PARK Y T. Surface modification reaction of photocatalytic titanium dioxide with triethoxysilane for improving dispersibility[J]. Bulletin- Korean Chemical Society, 2010,31(5):1275-1279.
doi: 10.5012/bkcs.2010.31.5.1275
[26] WU Z W, ZHANG L J, ZHAI X J, et al. Preparation and photocatalytic activity analysis of nanometer TiO2 modified by surfactant[J]. Nanomaterials and Nanotec- hnology, 2018(8):1-8.
[27] VOROKH A S. Scherrer formula: estimation of error in determining small nanoparticle size[J]. Nanosystems: Physics, Chemistry, Mathematics, 2018,9(3):364-369.
[28] YANG Y, ZHANG T, LING L, et al. Quick and facile preparation of visible light-driven TiO2 photocatalyst with high absorption and photocatalytic activity[J]. Scientific Reports, 2014,4(1):1-6.
[29] 吉强, 王晓, 戚俊然, 等. 光接枝丙烯酸棉纤维素基TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017,38(10):75-80.
JI Qiang, WANG Xiao, QI Junran, et al. Preparation and photocatalysis of acrylic grafted cotton cellulose-based TiO2/C photocatalyst[J]. Journal of Textile Research, 2017,38(10):75-80.
[30] XIANG Q J, YU J G. Photocatalytic activity of hierarc- hical flower-like TiO2 superstructures with dominant {001} facets[J]. Chinese Journal of Catalysis, 2011,32(3/4):525-531.
doi: 10.1016/S1872-2067(10)60186-6
[31] RAHIM S, GHAMSARI M S, RADIMAN S. Surface modification of titanium oxide nanocrystals with PEG[J]. Scientia Iranica, 2012,19(3):948-953.
doi: 10.1016/j.scient.2012.03.009
[32] ZHOU C H, ZHAO X Z, YANG B C, et al. Effect of poly (ethylene glycol) on coarsening dynamics of titanium dioxide nanocrystallites in hydrothermal reaction and the application in dye sensitized solar cells[J]. Journal of Colloid & Interface Science, 2012,374(1):9-17.
pmid: 22405580
[33] WANG Y, ZHANG L, DENG K, et al. Low temperature synjournal and photocatalytic activity of rutile TiO2 nanorod superstructures[J]. Journal of Physical Chemistry C, 2007,111(6):2709-2714.
doi: 10.1021/jp066519k
[34] GROEN J C, PEFFER L A A, JAVIER P. Pore size determination in modified micro- and mesoporous materials. pitfalls and limitations in gas adsorption data analysis[J]. Microporous & Mesoporous Materials, 2003,60(1):1-17.
[35] LI S, CHEN J, ZHENG F, et al. Synjournal of the double-shell anatase-rutile TiO2 hollow spheres with enhanced photocatalytic activity[J]. Nanoscale, 2013,5(24):12150-12155.
pmid: 24177374
[36] RODRIGUEZ J L, POZNYAK T, VALENZEUELA M A, et al. Surface interactions and mechanistic studies of 2,4-dichlorophenoxyacetic acid degradation by catalytic ozonation in presence of Ni/TiO2[J]. Chemical Engineering Journal, 2013,222(15):426-434.
doi: 10.1016/j.cej.2013.02.086
[37] NANAYAKKARA C E, JAYAWEERA P M, RUBASI- NGHEGE G, et al. Surface photochemistry of adsorbed nitrate: the role of adsorbed water in the formation of reduced nitrogen species on α-Fe2O3 particle surfaces[J]. Journal of Physical Chemistry A, 2014,118(1):158-166.
doi: 10.1021/jp409017m
[38] LALITHA K, REDDY J K, KUMARI V D, et al. Conti- nuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: water mixtures under solar irradiation: a structure-activity correlation[J]. International Journal of Hydrogen Energy, 2010,35(9):3991-4001.
doi: 10.1016/j.ijhydene.2010.01.106
[39] KUBALA-KUKUS A, BANAS D, STABRAWA I, et al. Analysis of Ti and TiO2 nanolayers by total reflection X-ray photoelectron spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018,145(1):43-50.
doi: 10.1016/j.sab.2018.03.012
[40] XU H, SONG Z, WANG X, et al. Synjournal of well- dispersed TiO2 nanoparticles by a sol-hydrothermal method[J]. Asian Journal of Chemistry, 2011,23(5):2339-2342.
[41] YANG H, YANG Z J, HAN C, et al. Photocatalyic activity of Fe-doped diopside[J]. Transactions of Nanoferrous Metals Society of China, 2012,22(12):3053-3058.
[42] WANG B, DUAN Y, ZHANG J. Titanium dioxide nanoparticles-coated aramid fiber showing enhanced interfacial strength and UV resistance properties[J]. Materials & Design, 2016,103:330-338.
[43] CAO K C, ZOBERBIER T, BISKUPEK J, et al. Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts[J]. Nature Communications, 2018(9):1-10.
[1] LI Qing, GUAN Binbin, WANG Ya, LIU Tianhui, ZHANG Luohong, FAN Zenglu. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R [J]. Journal of Textile Research, 2020, 41(10): 87-93.
[2] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[3] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide / poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[4] XU Hongyun, YU Cun, SU Bang. Optimization of decolorization conditions of Direct Scarlet 4BS by Cerrena unicolor [J]. Journal of Textile Research, 2020, 41(04): 78-83.
[5] CHEN Dongzhi, YANG Xiaogang, CHEN Yanxia, LIU Lin, CHEN Bin, . Study on cellulose-based flocculant from flax yarn waste and its flocculation performance in treating industrial wastewater [J]. Journal of Textile Research, 2020, 41(01): 88-95.
[6] XU Chunxia, JIANG Shuai, HAN Fuyi, XU Fang, LIU Lifang. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue [J]. Journal of Textile Research, 2019, 40(10): 20-25.
[7] ZHANG Heng, ZHEN Qi, LIU Yong, SONG Weimin, LIU Rangtong, ZHANG Yifeng. Air filtration performance and morphological features of polyethylene glycol/polypropylene composite fibrous materials with embedded structure [J]. Journal of Textile Research, 2019, 40(09): 28-34.
[8] XIAO Chuanmin, XIAO Changfa, ZHANG Tai, WANG Xinya. Structure and properties of braided tube reinforced polylactic acid hollow fiber membranes [J]. Journal of Textile Research, 2019, 40(08): 20-26.
[9] ZHANG Heng, SHENTU Baoqing, ZHANG Wei, ZHANG Yifeng, CUI Guoshi. Structure and liquid retention properties of polyethylene glycol/ polypropylene melt blown nonwoven with bionic vein networks [J]. Journal of Textile Research, 2019, 40(05): 18-23.
[10] . Preparation and photocatalytic properties of  polyester fabric loaded with titanium dioxide [J]. Journal of Textile Research, 2018, 39(11): 91-95.
[11] . Adsorption properties of cross-linked amino starch onto methylene blue [J]. Journal of Textile Research, 2018, 39(11): 103-110.
[12] . Synthesis kinetics of polyester by organic titanium-silicon catalysts [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 1-7.
[13] . Low temperature bonding preparation of functionalized ramie fabrics for formaldehyde photocatalytic degradation  [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 106-111.
[14] . Application of reverse micelles solvent extraction in removal and reuse of soluble reactive dyes [J]. Journal of Textile Research, 2016, 37(05): 85-91.
[15] . Microwave-assisted low temperature in-situ synthesis and coating of Tungsten-doped TiO2 onto cotton fabric and photocatalytic peerformance of coated fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 88-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!