Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 20-25.doi: 10.13475/j.fzxb.20180905406

• Fiber Materials • Previous Articles     Next Articles

Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue

XU Chunxia1,2, JIANG Shuai1,2, HAN Fuyi1,2, XU Fang1,2, LIU Lifang1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China;
  • Received:2018-09-20 Revised:2019-06-16 Online:2019-10-15 Published:2019-10-23
  • Contact: LIU Lifang E-mail:lifangliu@dhu.edu.cn

Abstract:

In order to solve the adsorption problem of methylene blue (MB) in dyeing wastewater, a cellulose nanofiber(CNF) aerogel was prepared from rice straw CNF suspension by freezing and thawing gel, displacing with tert-butanol solvent and freeze drying with liquid nitrogen. The morphology structure of the aerogel as well as its adsorption capacity to MB was characterized. The influences of adsorbent quality and solution pH value on the adsorption performance were also investigated. The adsorption mechanism was discussed by adsorption kinetics and adsorption isotherm model. The results show that the CNF aerogel obtained by freeze-drying of tert-butanol has a three-dimensional network structure which contains a large number of spider-like fibers with a diameter of 6-26 nm. The aerogel exhibits a porous structure with a specific surface area of 52.25 m2/g, and an average pore size of 28.82 nm. The pseudo-second-order adsorption kinetic and Freundlich adsorption isothermal model are more suitable for describing the adsorption process of methylene blue on CNF aerogel, with the theoretical maximum adsorption of 196.08 mg/g.

Key words: dyeing wastewater, aerogel, cellulose nanofiber, methylene blue, adsorption

CLC Number: 

  • O647.32

Fig.1

Morphologies of CNF aerogel (×50 000)"

Fig.2

N2 adsorption-desorption isotherm (a) and pore size distribution (b) of CNF aerogel"

Fig.3

Effect of adsorbent weight on adsorption capacity of CNF aerogels"

Fig.4

Effect of solution pH value on adsorption capacity of CNF aerogels"

Fig.5

Effect of contact time on adsorption capacity of CNF aerogels"

Fig.6

Pseudo-first-order (a) and Pseudo-second-order (b) kinetic for adsorption of MB by CNF aerogel"

Tab.1

Kinetic model parameters for adsorption of MB by CNF aerogel"

MB质量浓度/
(mg·L-1)
实际测量
值/(mg·g-1)
准一级动力学 准二级动力学
qe/(mg·g-1) k1/min-1 R2 qe/(mg·g-1) k2/min-1 R2
10 49.12 25.53 0.032 8 0.932 6 51.02 0.003 046 0.999 8
50 195.90 271.65 0.041 4 0.939 1 222.22 0.000 195 0.996 7

Fig.7

Langmuir(a) and Freundlich(b) adsorption isotherm for adsorption of MB by CNF aerogel at 25 ℃"

Tab.2

Adsorption isotherm parameter for adsorption of MB by CNF aerogel"

Langmuir模型 Freundlich模型
qmax/
(mg·g-1)
KL/
(L·mg-1)
R2 1/n KF/
(mg·g-1)
R2
196.08 0.772 7 0.925 0 0.291 7 7.007 6 0.942 8
[1] GUPTA V K, SUHA S. Application of low-cost adsorbents for dye removal: a review[J]. Journal of Environmental Management, 2009,90(8):2313-2342.
doi: 10.1016/j.jenvman.2008.11.017 pmid: 19264388
[2] ABITBOL T, RIVKIN A, CAO Yifeng, et al. Nanocellulose: a tiny fiber with huge applications[J]. Current Opinion in Biotechnology, 2016,39:76-88.
doi: 10.1016/j.copbio.2016.01.002 pmid: 26930621
[3] LI Ziyu, JIA Zhigang, NI Tao, et al. Adsorption of methylene blue on natural cotton based flexible carbon fiber aerogels activated by novel air-limited carbonization method[J]. Journal of Molecular Liquids, 2017,242:747-756.
[4] MAATAR W, BOUFI S. Microporous cationic nanofibrillar cellulose aerogel as promising adsorbent of acid dyes[J]. Cellulose, 2017,24(2):1001-1015.
[5] FENG J, DINH D M, HSIEH Y L. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels[J]. Carbohydrate Polymers, 2017,173:286-294.
doi: 10.1016/j.carbpol.2017.05.097 pmid: 28732868
[6] 徐春霞, 降帅, 韩阜益, 等. TEMPO氧化体系协同超声波法纤维素纳米纤丝的制备及表征[J]. 纺织科学与工程学报, 2018,35(4):102-107.
XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation and characterization of cellulose nanofibrils by TEMPO oxidation system combined with ultrasonication[J]. Journal of Textile Science & Engineering, 2018,35(4):102-107.
[7] FENG J, HSIEH Y L. Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing[J]. Journal of Materials Chemistry A, 2014,2(2):350-359.
[8] 万才超, 卢芸, 孙庆丰, 等. 新型木质纤维素气凝胶的制备、表征及疏水吸油性能[J]. 科技导报, 2014,32(4/5):79-85.
WAN Caichao, LU Yun, SUN Qingfeng, et al. Preparation and characterization of novel lignocellulose aerogel with hydrophobicity and oil absorption properties[J]. Science and Technology Review, 2014,32(4/5):79-85.
[9] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribu-tion (IUPAC Technical Report)[J]. Pure & Applied Chemistry, 2015,87(9/10):1051-1069.
[10] 邹晶晶. 利用粉煤灰提铝酸渣合成孔材料和纤维材料[D]. 长春:吉林大学, 2016: 62.
ZOU Jingjing. Synthesis of porous and fibrous materials based on acid-extraction residues of fly ash[D]. Changchun:Jilin University, 2016: 62.
[11] 王小娟. 基于微晶纤维素的跨尺度气凝胶的制备及吸附性能研究[D]. 苏州:苏州大学, 2017: 38-43.
WANG Xiaojuan. The preparation and absorption performance of cross-scale aerogel based on microcrystalline cellulose[D]. Suzhou:Soochow University, 2017: 38-43.
[12] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999,34(5):451-465.
doi: 10.1016/S0032-9592(98)00112-5
[13] ZHOU Chengjun, LEE Sunyoung, DOOLEY K, et al. A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations[J]. Journal of Hazardous Materials, 2013,263:334-341.
doi: 10.1016/j.jhazmat.2013.07.047 pmid: 23958139
[14] 焦晨璐. 微晶纤维素基气凝胶的制备及对重金属、染料的吸附降解性研究[D]. 苏州:苏州大学, 2017: 58-60.
JIAO Chenlu. Preparation of microcrystalline cellulose based aerogel and its application for adsorption of heavy metals and degradation of dyes[D]. Suzhou: Soochow University, 2017: 58-60.
[15] SHIRSATH S R, PATIL A P, PATIL R, et al. Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study[J]. Ultrasonics Sonochemistry, 2013,20(3):914-923.
doi: 10.1016/j.ultsonch.2012.11.010 pmid: 23266437
[1] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[2] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[3] FANG Zhou, SONG Leilei, SUN Baojin, LI Wenxiao, ZHANG Chao, YAN Jun, CHEN Lei. Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants [J]. Journal of Textile Research, 2020, 41(08): 135-144.
[4] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide / poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[5] LIU Leigen, SHEN Zhongan, LIN Zhenfeng, TAO Jin. Property and mechanism of poly(lactic acide) / chitosan / Fe3O4 superfine fibrous membrane adsorbing acid blue MTR [J]. Journal of Textile Research, 2020, 41(05): 20-24.
[6] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[7] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[8] XU Hongyun, YU Cun, SU Bang. Optimization of decolorization conditions of Direct Scarlet 4BS by Cerrena unicolor [J]. Journal of Textile Research, 2020, 41(04): 78-83.
[9] WANG Jiankun, JIANG Xiaodong, GUO Jing, YANG Lianhe. Research progress of functionalized graphene oxide adsorption materials [J]. Journal of Textile Research, 2020, 41(04): 167-173.
[10] WANG Shixian, JIANG Shuai, LI Mengmeng, LIU Lifang, ZHANG Li. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent [J]. Journal of Textile Research, 2020, 41(03): 33-38.
[11] WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, WANG Nana, YAN Jinlong, ZHAO Guoliang. Influence of extreme hydrophobic dye structure on dyeing properties of ultrahigh molecular weight polyethylene fibers [J]. Journal of Textile Research, 2020, 41(03): 78-83.
[12] DANG Danyang, CUI Lingyan, WANG Liang, LIU Yong. Preparation and properties of cellulose nanofiber / montmorillonite composite aerogels [J]. Journal of Textile Research, 2020, 41(02): 1-6.
[13] CHEN Dongzhi, YANG Xiaogang, CHEN Yanxia, LIU Lin, CHEN Bin, . Study on cellulose-based flocculant from flax yarn waste and its flocculation performance in treating industrial wastewater [J]. Journal of Textile Research, 2020, 41(01): 88-95.
[14] WANG Jie, WANG Bin, DU Zongxi, LI Congju, LI Xiuyan, AN Boru. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II) [J]. Journal of Textile Research, 2020, 41(01): 1-7.
[15] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose / graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!