Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (02): 58-62.doi: 10.13475/j.fzxb.20180908405

• Textile Engineering • Previous Articles     Next Articles

Thermal adhesion enhancement process of air jet vortex spun yarn

LIN Yanyan1,2, ZOU Zhuanyong1(), CHEN Yuxiang1, YANG Yanqiu1   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology in Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-09-30 Revised:2018-11-12 Online:2019-02-15 Published:2019-02-01
  • Contact: ZOU Zhuanyong E-mail:zouzhy@usx.edu.cn

Abstract:

Aiming at poor strength of air jet vortex spun yarn, low-melting point polyester fiber was introduced to reinforce air jet vortex spun yarn by heat bonding. The significant differences of the influence of different thermal contact modes on the yarn fracture work were compared by means of T-test. Orthogonal design was used to study the influence of heat treatment temperature, heat treatment speed and draw ratio on the yarn fracture work, and the optimal process was verified. The results show that the original yarn subjected to non-contact heat treatment has significantly improved fracture work. The fracture work of yarns increases first and then decreases with the rise of heat treatment temperature. When the speed increases, it shows an upward trend. With the increase of the draw ratio, the fracture work improves obviously. The optimal heat treatment process is: heat treatment temperature of 145 ℃, heat treatment speed of 600 cm/min, and draw ratio of 1.06, and the fracture work of the jet vortex spun yarn can be increased by 13% after the optimal process heat treatment.

Key words: air jet vortex spinning, low melting point polyester, fracture work of yarn, thermal adhesion

CLC Number: 

  • TS131

Tab.1

Material specifications and performance indicators"

纤维
种类
线密度/
dtex
长度/
mm
断裂强度/
(cN·dtex-1)
断裂伸长
率/%
弹性模量/
(cN·dtex-1)
粘胶 1.33 38 2.506 17.53 4.82
涤纶 2.22 51 5.24 31.78 10.01

Fig.1

Heat treatment process flow chart. (a) Contact flow chart; (b) Noncontact flow chart"

Tab.2

Factor level table"

水平 A B C
热处理温度/ ℃ 热处理速度/(cm·min-1) 牵伸倍数
1 130 300 1.00
2 145 600 1.03
3 160 900 1.06

Fig.2

SEM photos of viscose/low melting point polyester air jet vortex spinning original yarn. (a)Low magnification(×100);(b)High magnification(×300)"

Tab.3

Results of orthogonal test and range analysis"

试验
序号
A B A×B C 断裂功/
(N·mm)
1 1 1 1 1 86.545
2 1 2 2 2 91.369
3 1 3 3 3 89.443
4 2 1 2 3 92.680
5 2 2 3 1 88.253
6 2 3 1 2 88.798
7 3 1 3 2 84.205
8 3 2 1 3 87.105
9 3 3 2 1 88.862
K1 89.119 87.810 87.483 87.887
K2 89.910 88.909 90.970 88.124
K3 86.724 89.034 87.300 89.743
R 3.186 1.224 3.670 1.856

Tab.4

Optimal process results"

指标
类型
断裂强
力/N
断裂伸
长率/%
弹性模量/
(cN·dtex-1)
断裂功/
(N·mm)
原纱 2.489 11.061 24.339 85.394
最佳工艺 2.809 11.339 25.321 96.534

Fig.3

Typical SEM images of viscose/low melting point polyester air jet vortex spinning yarn after heat treatment. (a)Thermal deformation(×1 000);(b)Melt bond (×500)"

[1] BECEREN Y, NERGIS B U. Comparison of the effects of cotton yarns produced by new, modified and conventional spinning systems on yarn and knitted fabric performance[J]. Textile Research Journal, 2008,78(4):297-303.
[2] ORTLEK H G, ONAL L. Comparative study on the characteristics of knitted fabrics made of vortex-spun viscose yarns[J]. Fibers and Polymers, 2008,9(2):194-199.
[3] 邹专勇, 俞建勇, 薛文良, 等. 喷气涡流纺喷嘴内部三维流场的数值研究[J]. 纺织学报, 2008,29(2):86-89.
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Numerical study of three-dimensional flow field inside thenozzle of air jet vortex spinning[J]. Journal of Textile Research, 2008,29(2):86-89.
[4] LI M, YU C, SHANG S. Effect of vortex tube structure on yarn quality in vortex spinning machine[J]. Fibers and Polymers 2014,15(8):1786-1791.
[5] 邹专勇, 俞建勇, 薛文良, 等. 喷气涡流纺工艺参数对气流场影响的数值计算[J]. 纺织学报, 2008,29(4):32-36.
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Numerical computation of flow filed affected by process parameters in air jet vortex spinning machine[J]. Journal of Textile Research, 2008,29(4):32-36.
[6] 陈洪立, 李炯, 金玉珍, 等. 空心锭结构参数对喷气涡流纺内流场的影响[J]. 纺织学报, 2017,38(12):135-140.
CHEN Hongli, LI Jiong, JIN Yuzhen, et al. Influence of hollow spindle structure parameters on flow field of air jetvortex spinning[J]. Journal of Textile Research, 2017,38(12):135-140.
[7] KUTHALAM E S, SENTHILKUMAR P. Effect of fiber fineness and spinning speed on polyester vortex spun yarn properties[J]. Fibres & Textiles in Eastern Europe, 2013, 21, 5(101):35-39.
[8] NAZAN Erdumlu, BULENT Ozipek. Effect of the draft ratio on the properties of vortex spun yarn[J]. Fibres & Textiles in Eastern Europe, 2010,18(3):38-42.
[9] ORTLEK H G, ULKU S. Effect of some variables on properties of 100% cotton vortex spun yarn[J]. Textile Research Journal, 2005,75(6):458-461.
[10] HAN C, XUE W, CHENG L, et al. Theoretical analysis of the yarn fracture mechanism of self-twist jet vortex spinning[J]. Textile Research Journal, 2017,87(11):1394-1402.
[11] HAN C, XUE W, CHENG L, et al. Comparative analysis of different jet vortex spinning hollow spindle groove structures on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016,86(19):2022-2031.
[12] THILAGAVATHI G, MUTHUKUMAR N, KUMAR K V, et al. Physical and thermal comfort properties of viscose fabrics made from vortex and ring spun yarns[J]. The Institution of Engineers (India): Series E, 2016,98(1):65-70.
[13] MONTSERRAT S, ROMAN F, COLOMER P. Study of the crystallization and melting region of pet and pen and their blends by TMDSC[J]. Journal of Thermal Analysis and Calorimetry, 2003,72:657-666.
[1] . Preparation and properties of waste textile regenerated felt materials [J]. Journal of Textile Research, 2018, 39(11): 56-60.
[2] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[3] . Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves [J]. Journal of Textile Research, 2018, 39(09): 139-145.
[4] . influence of hollow spindler structure parameters on flow field of air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 135-140.
[5] . Influence of yarn formation process on properties of knitted fabrics made of air jet vortex-spun bamboo pulp colored yarns [J]. Journal of Textile Research, 2015, 36(06): 30-36.
[6] . Influence of yarn formation process on properties of bamboo pulp fiber colored spun yarn using air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 23-0.
[7] LIANG Fangge;CHENG Longdi;LIU Yan;LIU Xiaozhen;SHAO Nan. Study on the stress relaxation mechanism of air jet vortex spun yarns with naturally colored cotton [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(8): 27-29.
[8] 邹专勇;俞建勇;薛文良;程隆棣. Analysis of the cause leading to generation of thin places on the air jet vortex spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(7): 21-26.
[9] ZOU Zhuanyong;YU Jianyong;XUE Wenliang;CHENG Longdi. Evaluating the strength of the vortex twist acting on the yarn in air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 19-21.
[10] ZOU Zhuanyong;YU Jianyong;XUE Wenliang;CHENG Longdi. Numerical study of three-dimensional flow field inside the nozzle of air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(2): 86-89.
[11] ZOU Zhuanyong;CHENG Longdi;YU Jianyong;XUE Wenliang. Fiber spatial configuration in air jet vortex spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(10): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!