Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 186-191.doi: 10.13475/j.fzxb.20181001406

• Management & Information • Previous Articles     Next Articles

Prediction of relationship between shoulder strap attribute and breast amplitude of sports bra by BP neural network

ZHOU Jie(), MA Qiurui   

  1. School of Apparel and Art Design, Xi'an Polytechnic University, Xi'an, Shaanxi 710048
  • Received:2018-10-09 Revised:2019-06-11 Online:2019-09-15 Published:2019-09-23

Abstract:

In order to determine the influence of 3 properties of the sports bras shoulder straps on breast amplitudes during running, the motions of breast markers were attached in 6 different left breast positions of 8 subjects, and different shoulder straps were replaced for the human motion testing. The 3-D coordinates of the breast markers were recorded, and the amplitudes of the breast motion were obtained. The weight relationship between the 3 properties of the shoulder straps and the breast amplitude was determined by using the BP neural network model to replace different model parameters. The results show that when the transmission function of BP neural network is tansig function, the number of implicit layer neurons is 21, and the training function is traingdm as the network parameters, the breast amplitude values of the network fitting is close to the true values of the breast motion to 99.44%. The weights and thresholds of the network input to the hidden layer and the hidden to the output layer are respectively obtained under the network parameters. The positive inference relationship between 3 kinds of properties of the shoulder straps and the breast amplitudes can be obtained.

Key words: sports bra, bra shoulder strap, BP neural network, breast amplitude

CLC Number: 

  • TS941.763.5

Fig.1

Shoulder straps"

Fig.2

10 test markers"

Tab.1

Sample measurement values for marker points"

标记点
序号
距离/
cm
面密度/
(g·m-2)
伸长
率/%
强力/
N
每个标记点整体振幅/cm
x方向 y方向 z方向
1 7.18 66.3 133 0.553 0.45 1.13 0.23
2 4.31 51.3 82 1.036 0.40 0.66 0.23
3 6.20 73.8 80 1.458 0.47 0.77 0.21
? ? ? ? ? ? ? ?
431 5.78 59.4 74 1.462 1.69 1.63 0.96
432 6.68 69.4 81 1.570 1.74 1.91 1.10

Fig.3

BP Neural network topology graph"

Tab.2

Mean square error of 60 kinds of network net"

隐含层
神经元个数
logsig下的训练函数 tansig下的训练函数
trainbfg函数 traingd函数 traingdm函数 trainbfg函数 traingd函数 traingdm函数
20 net1(0.078) net2(0.053) net3(0.045) net4(0.045) net5(0.033) net6(0.025)
21 net7(0.096) net8(0.066) net9(0.040) net10(0.040) net11(0.036) net12(0.023)
22 net13(0.089) net14(0.077) net15(0.047) net16(0.047) net17(0.037) net18(0.025)
23 net19(0.072) net20(0.087) net21(0.048) net22(0.048) net23(0.037) net24(0.027)
24 net25(0.078) net26(0.055) net27(0.048) net28(0.048) net29(0.045) net30(0.026)
25 net31(0.095) net32(0.059) net33(0.048) net34(0.045) net35(0.039) net36(0.029)
26 net37(0.080) net38(0.062) net39(0.049) net40(0.049) net41(0.030) net42(0.032)
27 net43(0.097) net44(0.088) net45(0.059) net46(0.059) net47(0.038) net48(0.027)
28 net49(0.096) net50(0.082) net51(0.052) net52(0.052) net53(0.032) net54(0.026)
29 net55(0.089) net56(0.083) net57(0.059) net58(0.049) net59(0.038) net60(0.027)

Fig.4

BP neural network fitting transmission diagram"

Tab.3

Final weights and thresholds of network"

行列序号 输入层到隐含层 隐含层到输出层
权值矩阵iw1 阈值矩阵b1 权值矩阵iw2的转置 阈值矩阵b2
第1列 第2列 第3列 第4列 第1列 第1列 第2列 第3列 第1列
第1行 -26.17 56.67 -2.03 111.23 13.63 -0.47 -0.52 -0.41 1.10
第2行 2.28 -4.50 -0.01 0.66 -12.98 1.21 3.10 2.05 0.95
第3行 2.03 -58.88 0.39 17.01 -15.79 1.11 1.26 0.71 0.42
第4行 -0.41 -14.59 -0.15 -5.35 41.85 5.64 9.81 7.02
第5行 -3.32 -6.20 -0.16 -5.45 47.19 0.97 1.22 0.67
第6行 -6.78 -1.97 -0.59 -15.81 130.42 -0.32 -0.47 -0.34
第7行 -7.00 6.39 -0.15 -7.87 61.04 -0.61 -0.65 -0.48
第8行 0.32 11.22 0.07 1.68 -23.98 -5.09 -9.73 -6.76
第9行 -11.57 31.61 1.77 12.12 -122.90 0.66 0.98 0.53
第10行 -30.91 97.42 0.23 70.22 -63.00 -0.23 -0.32 -0.24
第11行 -1.48 4.75 -0.01 -1.28 8.89 1.93 4.04 2.63
第12行 -4.80 -46.03 0.30 -9.72 68.04 -0.81 -1.03 -0.60
第13行 -6.21 41.80 1.06 34.48 -145.52 -0.88 -1.12 -0.64
第14行 -51.15 -28.91 3.91 -54.67 -6.12 0.48 0.72 0.35
第15行 -0.36 -12.74 -0.10 -3.35 31.93 -10.30 -18.57 -13.07
第16行 -7.53 28.20 -0.20 20.64 -18.45 -0.63 -0.91 -0.45
第17行 -19.96 -11.37 0.33 29.72 46.60 0.59 0.68 0.43
第18行 -5.40 23.37 0.24 4.58 -26.83 0.98 1.37 0.79
第19行 40.27 -3.86 -0.01 -0.17 -225.58 0.09 0.51 0.07
第20行 -18.74 15.71 0.02 1.22 71.45 -1.63 -2.04 -1.21
第21行 7.02 -4.53 0.72 -31.33 -39.55 -0.77 -1.01 -0.58
[1] 马秋瑞, 周捷, 李健, 等. 基于小波变换的文胸底围压力数据分析[J]. 针织工业, 2018(9):57-60.
MA Qiurui, ZHOU Jie, LI Jian, et al. Analysis of bra bottom circumference pressure data based on wavelet transform[J]. Knitting Industries, 2018(9):57-60.
[2] 于晓坤. 文胸肩带功能分析与设计研究[D]. 上海:东华大学, 2014: 2-3.
YU Xiaokun. Function analyses and design of bra straps abstract[D]. Shanghai: Donghua University, 2014: 2-3.
[3] 马秋瑞, 周捷, 李健, 等. 运动文胸肩带数据分析[J]. 西安工程大学学报, 2018,32(3):249-253,271.
MA Qiurui, ZHOU Jie, LI Jian, et al. Data analysis of sports bra strap[J]. Journal of Xi'an Polytechnic University, 2018,32(3):249-253,271.
[4] YU Xiaokun, WANG Keyi, HE Jiazhen, et al. Factorial analysis on breast lifted and gathered effects caused by bra straps[J]. Advanced Materials Research, 2011, 332-334:1451-1456.
doi: 10.4028/www.scientific.net/AMR.332-334
[5] 徐军, 王成荣, 李条条. 文胸肩带的选择依据分析[J]. 西安工程大学学报, 2011,25(2):193-197.
XU Jun, WANG Chengrong, LI Tiaotiao. Analysis of the basis of straps choice[J]. Journal of Xi'an Polytechnic University, 2011,25(2):193-197.
[6] 甘应进, 陈东生, 孟爽, 等. 女胸衣肩带滑落的原因及改进[J]. 纺织学报, 2005,26(2):127-129.
GAN Yingjin, CHEN Dongsheng, MENG Shuang, et al. Exploration and ameliorative method on brassiere girdle sliding[J]. Journal of Textile Research, 2005,26(2):127-129.
[7] ZHOU Jie, YU Winnie. A study on biomechanical models of sports bra's shoulder straps[J]. Journal of Fiber Bioengineering and Informatics, 2013,6(4):441-451.
doi: 10.3993/jfbi
[8] 李立新. 文胸的肩带设计研究[J]. 针织工业, 2008(5):35-38.
LI Lixin. Study on the shoulder strap design of bra[J]. Knitting Industries, 2008(5):35-38.
[9] ZHOU Jie, YU Winnie, NG Sunpui. Studies of three-dimensional trajectories of breast movement for better bra design[J]. Textile Research Journal, 2012,82(3):242-254.
doi: 10.1177/0040517511435004
[10] MENTZ H A, RUIZ-RAZURA A, MINIEL L A. Correction of the bra strap shoulder groove deformity in women[J]. Plastic and Reconstructive Surgery, 2007,120(7):2122-2123.
doi: 10.1097/01.prs.0000264660.73371.14 pmid: 18090798
[11] 于晓坤, 肖平, 张音. 文胸肩带拉伸性能测试分析[J]. 纺织学报, 2013,34(7):100-105.
YU Xiaokun, XIAO Ping, ZHANG Yin. Stretchability test of bra straps[J]. Journal of Textile Research, 2013,34(7):100-105.
[12] BOWLES K A, STEELE J R. Effects of strap cushions and strap orientation on comfort and sports bra performance[J]. Medicine and Science in Sports and Exercise, 2013,45(6):1113-1119.
pmid: 23274596
[13] COLTMAN C E, MCGHEE D E, STEELE J R. Bra strap orientations and designs to minimise bra strap discomfort and pressure during sport and exercise in women with large breasts[J]. Sports Medicine-Open, 2015(1):5.
doi: 10.1186/s40798-014-0005-5 pmid: 27747842
[14] 王丽卓, 陈东生, 林彬. 文胸肩带压强分布分析[J]. 纺织学报, 2009,30(9):102-105.
WANG Lizhuo, CHEN Dongsheng, LIN Bin. Analysis of pressure distribution of bra's shoulder straps[J]. Journal of Textile Research, 2009,30(9):102-105.
[15] ZHOU Jie. New methods of evaluating breast motion[D]. Hong Kong: The Hongkong Polytechnic University, 2011: 88-134.
[16] ZHOU Jie, YU Winnie. Identifying effective design features of commercial sports bras[J]. Textile Research Journal, 2013,83(14):1500-1513.
doi: 10.1177/0040517512464289
[17] 罗成汉. 基于MATLAB神经网络工具箱的BP网络实现[J]. 计算机仿真, 2004,21(5):109-111.
LUO Chenghan. Realization of BP network based on neural network tool kit in MATLAB[J]. Computer Simulation, 2004,21(5):109-111.
[18] HE Yong, LI Xiaoli, DENG Xunfei. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model[J]. Journal of Food Engineering, 2007,79(4):1238-1242.
doi: 10.1016/j.jfoodeng.2006.04.042
[19] WANG Zhiliang, LI Yongchi, SHEN R F. Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model[J]. Engineering Geology, 2007,91(2-4):168-177.
doi: 10.1016/j.enggeo.2007.01.007
[20] 徐力平, 张炎华. 评价神经网络拟合精度的另一个指标[J]. 上海交通大学学报, 2002,36(7):980-983.
XU Liping, ZHANG Yanhua. Another criterion to judge performance of neural networks[J]. Journal of Shanghai Jiaotong University, 2002,36(7):980-983.
[21] 柳松青. MATLAB神经网络BP网络研究与应用[J]. 计算机工程与设计, 2003,24(11):81-83.
LIU Songqing. Research and application on MATLAB BP neural network[J]. Computer Engineering and Design, 2003,24(11):81-83.
[22] 杨宝华. 基于Matlab的BP神经网络应用[J]. 电脑知识与技术, 2008,3(7):124-125.
YANG Baohua. Based on Matlab BP neural network application[J]. Computer Knowledge and Technology, 2008,3(7):124-125.
[23] 徐远芳, 周旸, 郑华. 基于MATLAB的BP神经网络实现研究[J]. 微型电脑应用, 2006,22(8):41-44.
XU Yuanfang, ZHOU Yang, ZHENG Hua. The research on the realization of back propagation network based on MATLAB[J]. Microcomputer Applications, 2006,22(8):41-44.
[1] ZHANG Xiaoxia, LIU Fengkun, MAI Wei, MA Chongqi. Prediction of loom efficiency based on BP neural network and its improved algorithm [J]. Journal of Textile Research, 2020, 41(08): 121-127.
[2] WANG Jianping, XU Shuo, WANG Zhujun, YAO Xiaofeng, LI Yonggui. Design and implementation of electronic monitoring system for intelligent sports bra [J]. Journal of Textile Research, 2020, 41(06): 105-111.
[3] ZHENG Jingjing, ZHAO Qingyao, YAN Yuxiu. Effect of sports bra on breast displacement amplitude during running [J]. Journal of Textile Research, 2020, 41(03): 130-135.
[4] JIN Shoufeng, LIN Qiangqiang, MA Qiurui, ZHANG Hao. Method for detecting fluff quality of fabric surface based on BP neural network [J]. Journal of Textile Research, 2020, 41(02): 69-76.
[5] WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174.
[6] CHEN Huixian, LU Hong, LI Shuyang, ZUO Heng. Influence of sports bra structural elements on wearing comfort [J]. Journal of Textile Research, 2019, 40(09): 159-166.
[7] . Application of BP neural network in prediction of shapewear pressure [J]. Journal of Textile Research, 2019, 40(04): 111-116.
[8] ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network [J]. Journal of Textile Research, 2019, 40(01): 52-56.
[9] . Customization of sports bra cup based on 3-D printing [J]. Journal of Textile Research, 2018, 39(11): 135-139.
[10] . Intelligent determination of blending fiber for polytrimethylene terephthalate and polybutylene terephthalate [J]. Journal of Textile Research, 2018, 39(09): 169-175.
[11] . Generation of intelligent fitting pattern based on BP neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 116-121.
[12] . Shape analysis of bust slice using Elliptic Fourier [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 107-0.
[13] . Influence on heart rate variability indexes caused by clothing pressure developed by women’s basketball sports bra [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(6): 100-0.
[14] . Prediction for effect of environmental factors on silk fabric mechanical property by BP neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 39-0.
[15] . Men’s suit image emotional semantic recognition based on BP neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 138-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!