Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 79-84.doi: 10.13475/j.fzxb.20181002306

• Textile Engineering • Previous Articles     Next Articles

Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric

WANG Lu1, DING Xiaojun2, XIA Xin2, WANG Hong3, ZHOU Xiaohong1()   

  1. 1. Materials and Textile Institute, Silk College, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. National Experiment Teaching Center of Clothing, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Prui Technology Co., Ltd., Hangzhou, Zhejiang 311215, China
  • Received:2018-10-12 Revised:2019-06-26 Online:2019-10-15 Published:2019-10-23
  • Contact: ZHOU Xiaohong E-mail:zhouxh314@163.com

Abstract:

In order to research the effect of SiO2 aerogel on the anti-pressure, flame retardant protective functions of aramid nonwoven fabric, using aramid nonwoven fabric as the skeleton material, applying SiO2 aerogel to the surface of it, preparing SiO2 aerogel hybrid aramid nonwoven protective material. The structure was characterized by scanning electron microscopy, and its compression function was analyzed with a universal material testing machine. Finally, using the thermal constant analyzer and the flame hand system, the flame retardant insulation properties of the prepared protective materials were tested and evaluated. The results show that the SiO2 aerogel is filled into the gap between the fibers of the aramid nonwoven fabric in blocks or granules of different sizes. SiO2 aerogel can enhance the pressure resistance of aramid nonwoven fabric and reduce its thermal conductivity, the total absorbed energy value of the aramid nonwoven fabric is reduced after the hybrid SiO2 aerogel. It is illustrated that the SiO2 aerogel can significantly enhance the thermal protection effect of aramid nonwoven fabric.

Key words: SiO2 aerogel, aramid nonwoven fabric, flame retardant and heat insulation, flame hand system, thermal protective fabric

CLC Number: 

  • TS106.5

Tab.1

Parameter of samples"

样品
编号
厚度/
mm
面密度/
(g·m-2)
体积密度/
(10-3g·cm-3)
1# 0.52 64.4 124
2# 0.90 261.8 291
3# 0.58 100.3 173
4# 1.45 329.1 235
5# 1.51 372.1 246
6# 2.05 470.7 233
7# 1.95 409.3 225

Fig.1

Morphological changes of aramid nonwoven fabric before and after hybrid SiO2 aerogel"

Fig.2

Load-displacement curve of sample"

Fig.3

Stress-strain curve of sample"

Tab.2

Compression work and heat conductivity coefficient of sample"

样品
编号
压缩
功/J
能量吸收能力/
(kJ·m-3)
导热系数平均
值/(W·m-1·K-1)
1# 0.359 0.182 0.056 79
2# 0.563 0.221 0.045 50
3# 0.429 0.423 0.034 69
4# 0.641 0.190
5# 0.631 0.202
6# 0.913 0.149
7# 0.799 0.101

Fig.4

Flame hand site map and model map. (a) Site;(b) Palm hand back model"

Fig.5

Sample 1# real-time temperature curve of each sensor within 8 s"

Fig.6

Real-time temperature curve of sensor 1 in each sample within 8 s"

Fig.7

Sample 1# real-time heat flux curve of each sensor within 8 s"

Fig.8

Real-time heat flux curve of sensor 1 in 8 s of each sample"

Tab.3

Flame hand burn calculation"

样品
编号
总的吸
收能量/
kJ
烧伤程度占比/% 平均
热通量/
(kW·m-2)
没有
烧伤
一级
烧伤
二级
烧伤
三级
烧伤
1# 12.190 11.76 88.24 35.5
2# 11.034 38.24 61.76 19.8
4# 10.400 55.88 44.12 10.5
5# 8.657 88.24 11.76 7.9
6# 5.931 35.29 11.77 52.94 4.7
7# 6.153 8.82 91.18 8.2

Fig.9

Flame hand burn grade model for each sample"

[1] 翟丽娜, 李俊. 服装热防护性能测评技术的发展过程及现状[J]. 纺织学报, 2015,36(7):162-168.
ZHAI Li'na, LI Jun. Development and current status on performance test and evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015,36(7):162-168.
[2] 马青云. 浅谈纺织材料的阻燃检测[J]. 轻纺工业与技术, 2010,39(2):69-69.
MA Qingyun. Talking about the flame retardant detection of textile materials[J]. Light and Textile Industry and Technology, 2010,39(2):69-69.
[3] 张蓓. 我国芳纶纤维的发展概况[J]. 精细与专用化学品, 2010,18(10):6-9.
ZHANG Bei. Review of the development on aramid fiber in China[J]. Fine and Specialty Chemicals, 2010,18(10):6-9.
[4] 曹燕红, 查神爱, 刘丽艳. 芳纶1313阻燃花呢的开发[J]. 毛纺科技, 2014,42(10):8-10.
CAO Yanhong, ZHA Shenai, LIU Liyan. Development of Aramid 1313 flame retardant tweed[J]. Wool Textile Journal, 2014,42(10):8-10.
[5] 耿刚强, 王珊月, 毕伟涛, 等. 低密度纳米孔二氧化硅气凝胶的制备工艺[J]. 长安大学学报(自然科学版), 2010,30(4):107-110.
GENG Gangqiang, WANG Shanyue, BI Weitao, et al. Fabrication of nanoporous silica aerogels with low density[J]. Journal of Chang'an University (Natural Science Edition), 2010,30(4):107-110.
[6] 张德忠. 二氧化硅气凝胶在保温隔热领域中的应用[J]. 化学研究, 2016,27(1):120-127.
ZHANG Dezhong. Application of SiO2 aerogel in the field of thermal insulation[J]. Chemical Research, 2016,27(1):120-127.
[7] 陈姚, 酆赵龙, 黄湘桦, 等. 纳米二氧化硅气凝胶隔热材料的研究进展[J]. 无机盐工业, 2010,42(11):4-6.
CHEN Yao, FENG Zhaolong, HUANG Xianghua, et al. Progress in nano-silica aerogel insulation materials[J]. Inorganic Chemicals Industry, 2010,42(11):4-6.
[8] 许鲁, 王虹, 颜肇基, 等. SiO_2气凝胶混杂芳纶非织布的性能研究[J]. 现代纺织技术, 2018,26(1):22-25.
XU Lu, WANG Hong, YAN Zhaoji, et al. The Performance study of SiO2 aerogel hybrid aramid nonwoven fabric[J]. Advanced Textile Technology, 2018,26(1):22-25.
[9] 张玲. 芳纶纤维在阻燃织物上的应用[J]. 中国纤检, 2008(4):47-49.
ZHANG Ling. Application of aramid fiber on flame retardant fabric[J]. China Fiber Inspection, 2008(4):47-49.
[10] 王敏, 李俊, 李小辉. 燃烧假人在火场热防护服装研究中的应用[J]. 纺织学报, 2013,34(3):154-160.
WANG Min, LI Jun, LI Xiaohui. Application of flame manikin in thermal protective clothing research[J]. Journal of Textile Research, 2013,34(3):154-160.
[1] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[2] ZHU Fanglong;ZHANG Weiyuan. Fractal model for effective thermal conductivity of emergency thermal protective fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(6): 39-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!