Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 94-99.doi: 10.13475/j.fzxb.20181003006

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Influence of knitted deformation on dyeing in flat pad dyeing

WANG Qiuping1,2, MAO Zhiping1,3, ZHONG Yi1,2(), XU Hong1,2, ZHANG Linping1,2   

  1. 1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2018-10-17 Revised:2019-03-13 Online:2019-11-15 Published:2019-11-26
  • Contact: ZHONG Yi E-mail:zhongyi@dhu.edu.cn

Abstract:

In view of the challenge in the pad-dyeing of open width knitted fabric, which leads to unleveled dyeing and crease formation caused by varying tension during the dyeing operation, reactive dyes of various chemical structures were adopted to pad-dye cotton knitted fabric, and the influence of the dye structure on the dyeing performance of the cotton knitted fabric under different tensile deformation conditions after fixation was investigated by means of variance analysis. The results showed that when the pad-dye cotton knitted fabric are subjected to open width pad-dyeing with reactive red of different active groups, and prebaked and fixed by steaming under the transverse or longitudinal tensioning condition, the tension has small influence on the dyeing and the level dyeing of the knitted fabric; and the difference in the dye structures causes different absorption and fixation of the cotton knitted fabric to dyes, thus, different dyes have difference in the pad-dyeing lifting power to the same knitted fabric. When dyeing in light colors, pad-dyeing can save more dye, especially for reactive red WBRH (KN type), the color depth of pad-dyeing is significantly higher than that of dip dyeing. The dyeing performance and levelness were not affected and the washing color fastness were greater than or equal to 4 grades.

Key words: knitted fabric, open width, deformation, pad dyeing, reactive dye

CLC Number: 

  • TS193.5

Tab.1

Pad dye concentration and the corresponding value of dyeing"

轧染染料质量浓度/(g·L-1) 浸染染料用量/%(o.w.f) 轧染染料质量浓度/(g·L-1) 浸染染料用量/%(o.w.f)
5 0.40 40 3.08
10 0.79 50 3.81
20 1.57 60 4.53
30 2.33

Fig.1

Lifting force curve of reactive red dyes. (a) Reactive Red WBRH; (b) Reactive Red P-BN;(c) Reactive Red L-S"

Fig.2

Effect of transverse stretch rate on color depth during pre-baking"

Tab.2

Variance analysis for effect of transverse stretch rate on color depth during pre-baking"

染料 组间离均
平方和
组内离均
平方和
检验
统计量
P 临界值
活性红WBRH 0.003 0.086 0.21 0.93 4.18
活性红P-BN 0.041 0.656 0.39 0.81 4.18
活性红L-S 0.266 3.102 0.54 0.71 4.18

Fig.3

Effect of longitudinal stretch rate on color depth during pre-baking"

Tab.3

Variance analysis for effect of longitudinal stretch rate on color depth during pre-baking"

染料 组间离均
平方和
组内离均
平方和
检验
统计量
P 临界值
活性红WBRH 0.001 0.056 0.05 0.99 4.18
活性红P-BN 0.003 0.536 0.04 1.00 4.18
活性红L-S 0.113 2.180 0.32 0.86 4.18

Fig.4

Effect of transverse stretch rate on color depth during steaming"

Tab.4

Variance analysis for effect of transverse stretch rate on color depth during steaming"

染料 组间离均
平方和
组内离均
平方和
检验
统计量
P 临界值
活性红WBRH 0.006 0.060 0.68 0.61 4.18
活性红P-BN 0.029 0.525 0.35 0.84 4.18
活性红L-S 0.243 4.013 0.38 0.82 4.18

Fig.5

Effect of longitudinal stretch rate on color depth in steaming"

Tab.5

Variance analysis for effect of longitudinal stretch rate on color depth in steaming"

染料 组间离均
平方和
组内离均
平方和
检验
统计量
P 临界值
活性红WBRH 0.003 0.056 0.32 0.86 4.18
活性红P-BN 0.065 0.475 0.86 0.50 4.18
活性红L-S 0.069 1.362 0.32 0.86 4.18

Tab.6

Contrast of various fastness of continuous padding and dyeing of flat knitted fabric"

染料 染色方式 K/S 皂洗牢度/级 干摩擦牢度/级 湿摩擦牢度/级
褪色 沾色 横向 纵向 横向 纵向
活性红
WBRH
轧染 13.62 4~5 4~5 5 4~5 4 4
浸染 4.35 4~5 5 5 5 4~5 4
活性红
P-BN
轧染 11.01 4 5 4~5 5 4 4
浸染 6.98 4~5 5 5 4~5 4~5 4~5
活性红
L-S
轧染 18.52 4~5 4~5 4~5 4 3~4 3~4
浸染 18.45 4~5 5 5 4~5 4 4
[1] 林光兴. 针织业: 增长最快的行业之一[J]. 纺织服装周刊, 2005(11):11.
LIN Gangxin. Knitting industry: one of the fastest growing industries[J]. Textile Appaerl Weekly, 2005(11):11.
[2] 徐顺成. 针织物平幅连续化前处理工艺与设备[J]. 针织工业, 2011(5):34-36.
XU Shuncheng. Knitted fabric flat continuous pretreatment process and equipment[J]. Knitting Industries, 2011(5):34-36.
[3] 何叶丽. 针织物的平幅加工[J]. 印染, 2004,30(1):48-49.
HE Yeli. Flat processing of knitted fabrics[J]. China Dyeing & Printing, 2004,30(1):48-49.
[4] 赵文杰, 张晓云, 钟毅, 等. 棉针织物的冷轧堆前处理与染色[J]. 纺织学报, 2016,37(6):76-82.
ZHAO Wenjie, ZHANG Xiaoyun, ZHONG Yi, et al. Gold pad-batch pretreatment and dyeing of wtton knits[J]. Journal of Textile Research, 2016,37(6):76-82.
doi: 10.1177/004051756703700203
[5] 尹苗苗, 岳晓丽, 钟毅, 等. 针织物冷轧堆染色收卷张力设计[J]. 纺织学报, 2017,38(4):73-79.
YI Miaomiao, YUE Xiaoli, ZHONG Yi, et al. Knitted fabric winding tension of cold pad batch dyeing[J]. Journal of Textile Research, 2017,38(4):73-79.
[6] MINAPOOR S, AJELI S, HASANI H, et al. Investigation into the curling behavior of single jersey weft-knitted fabrics and its prediction using neural network model[J]. Journal of the Textile Institute, 2013,104(5):550-561.
doi: 10.1080/00405000.2012.752124
[7] 顾源祥. 拉幅机与针织物的低张力整理[J]. 国外纺织技术, 1988(15):32-35.
GU Yuanxiang. Low tension finishing of tenter and knitted fabric[J]. Foreign Textile Technology, 1988(15):32-35.
[8] 陈立秋. 针织平幅连续印染的节能减排:二[J]. 染整技术, 2010,32(11):48-53.
CHEN Liqiu. Energy saving and emission reduction of knitted flat continuous printing and dyeing: 2[J]. Textile Dyeing and Finishing Journal, 2010,32(11):48-53.
[9] 王菊. 棉针织物活性染料冷轧堆染色[D]. 上海: 东华大学, 2014: 23-24.
WANG Ju. Cold pad-batch dyeing of cotton knitted fabric with reactive dyes[D]. Shanghai: Donghua University, 2014: 23-24.
[1] LI Qing, GUAN Binbin, WANG Ya, LIU Tianhui, ZHANG Luohong, FAN Zenglu. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R [J]. Journal of Textile Research, 2020, 41(10): 87-93.
[2] HU Xiaorui, SUN Fengxin, XIAO Caiqin, GAO Weidong. Characterization of wrinkle recovery of fabrics based on in-situ mechanical testing [J]. Journal of Textile Research, 2020, 41(10): 41-45.
[3] ZHU Shigen, YANG Hongxian, BAI Yunfeng, DING Hao, ZHU Qiaolian. Investigation on automatic deformation inspection system of long and thin parts with hooks [J]. Journal of Textile Research, 2020, 41(10): 158-163.
[4] LIU Yun, XIU Yi. NURBS surface model of digital mannequin based on B / S architecture [J]. Journal of Textile Research, 2020, 41(10): 137-143.
[5] CHEN Jiaying, TIAN Xu, PENG Jingjing, FANG Tong, GAO Weihong. Fabrication of structural colors for knitted fabrics [J]. Journal of Textile Research, 2020, 41(07): 117-121.
[6] DING Yongsheng, DAI Yamin, ZHONG Yi, XU Hong, MAO Zhiping, ZHANG Linping, CHEN Zhize. Dyeing kinetics of reactive dye on cotton yarn in Pickering emulsion system [J]. Journal of Textile Research, 2020, 41(07): 101-108.
[7] ZHANG Wei, MAO Qingkai, ZHU Peng, CHAI Xiong, LI Huijun. Kinetic and thermodynamic of reactive dye study on silk fabric modification in ethanol / water system [J]. Journal of Textile Research, 2020, 41(06): 86-92.
[8] WU Wei, CHEN Xiaowen, ZHONG Yi, XU Hong, MAO Zhiping. Role of sodium sulfate in low add-on pad-cure-steam reactive dyeing process [J]. Journal of Textile Research, 2020, 41(05): 85-93.
[9] WEI Zhan, JIN Guoguang, LI Bo, SONG Yanyan, LU Chunhui. Modeling and simulation of contact force generated by beating-up cam in rapier looms [J]. Journal of Textile Research, 2020, 41(03): 154-159.
[10] ZHAO Yaru, XIAO Hong, CHEN Jianying. Elastic and electrical properties of stainless steel fiber / cotton blended spandex wrap yarn [J]. Journal of Textile Research, 2020, 41(03): 45-50.
[11] LIANG Jialu, CONG Honglian, ZHANG Aijun. Technical design model of weft-knitted two-side jacquard fabric [J]. Journal of Textile Research, 2020, 41(01): 69-74.
[12] WANG Xiaoyan, DU Jinmei, PENG Lingqi, JING Lili, XU Changhai. Alkali reduction and one-bath-one-step process for dyeing polyester knitted fabric [J]. Journal of Textile Research, 2020, 41(01): 80-87.
[13] YANG Enhui, QIU Hua, DAI Wenjie. Three-dimensional modeling and analysis of knitted fabric based on hexagonal mesh structure [J]. Journal of Textile Research, 2019, 40(11): 69-74.
[14] HE Qingqing, XU Hong, MAO Zhiping, ZHANG Linping, ZHONG Yi, LÜ Jingchun. Preparation of high-electrical conductivity polypyrrole-coated fabrics [J]. Journal of Textile Research, 2019, 40(10): 113-119.
[15] LIN Jiameng, MIAO Xuhong, WAN Ailan. Influence of plasma pretreatment on structure and properties of polypyrrole / polyester warp knitted conductive fabric [J]. Journal of Textile Research, 2019, 40(09): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!