Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 8-14.doi: 10.13475/j.fzxb.20181004207

• Fiber Materials • Previous Articles     Next Articles

Modification of activated carbon fiber using graphene oxide doped titanium dioxide

LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao(), LIU Xueting   

  1. Key Laboratory of Green Processing and Functional Textile Materials,Ministry of Education, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2018-10-23 Revised:2019-08-09 Online:2020-01-15 Published:2020-01-14
  • Contact: ZOU Hantao E-mail:hantao.zou@wtu.edu.cn

Abstract:

In order to better tackle wastewater pollution, activated carbon fiber was modified to improve adsorption performance. In this paper, graphene oxide (GO) doped titanium dioxide (TiO2) solution was prepared using the sol-gel method. The GO-TiO2 was successfully loaded on the activated carbon fibers (ACFs) using the immersion-pulling method. The effect of GO doping content on the performances of the modified GO-TiO2/ACFs was investigated. The microstructure and surface morphology were characterized by Fourier transform infrared spectrometer, Raman spectra, scanning electron microscope and X-ray diffraction. The photocatalytic degradation and adsorption kinetics of the modified ACFs under visible light were studied, and the results show that TiO2 in the prepared GO-TiO2/ACFs mainly consists of anatase phase. The GO doping prevented the growth and agglomeration of TiO2 crystal and resulted in smaller crystal size of TiO2, decreasing from 15.7 nm to 8.1 nm. Compared to TiO2/ACFs, the GO-TiO2/ACFs with a small content of GO demonstrated a superior adsorption performance under the visible light, and the removal rate of methylene blue increased from 65% to 85%. The GO-TiO2/ACFs adsorption results manifested better conformation with the pseudo-second-order kinetics model than the pseudo-first-order kinetics model.

Key words: activated carbon fiber, titanium dioxide, graphene oxide, photocatalytic performance, sol-gel method

CLC Number: 

  • TS102.6

Fig.1

FT-IR spectrum of GO doped TiO2 activated carbon fiber"

Fig.2

Raman spectrum of GO doped TiO2 activated carbon fiber"

Fig.3

XRD pattern of GO doped TiO2 activated carbon fiber"

Fig.4

SEM images of GO doped TiO2 activated carbon fiber(×1 000)"

Fig.5

Adsorption curve of GO doped TiO2 activated carbon fiber under visible light"

Tab.1

Kinetic parameters for adsorption of MB onto GO doped TiO2 activated carbon fiber under visible light"

样品名称 样品含量
(m(GO):m(Ti))
qe/
(mg·g-1)
准一级动力学方程 准二级动力学方程
k1/min-1 R2 qe1/(mg·g-1) k2/min-1 R2 qe2/(mg·g-1)
TiO2/ACF 0:1 0.610 0.242 0.952 0.792 2.598 0.993 2 0.618
GO-Ti700/ACF 1:700 0.822 0.176 0.885 1.058 1.562 0.995 4 0.836
GO-Ti350/ACF 1:350 0.873 0.359 0.901 1.214 1.422 0.998 5 0.885
GO/ACF 1:0 0.721 0.218 0.842 0.862 1.254 0.995 1 0.742
[1] 龙勇. 探究水污染防治过程中存在的问题及治理措施[J]. 低碳世界, 2018(7):27-28.
LONG Yong. Exploring the problems and control measures in the process of water pollution preven-tion[J]. Low Carbon World, 2018 (7):27-28.
[2] 李万周. 水资源保护及面源污染水治理措施的探析[J]. 水能经济, 2016(1):223-224.
LI Wanzhou. Analysis on water resources protection and non-point source pollution water control measures[J]. Water Energy Economy, 2016(1):223-224.
[3] 张余. 论城市水污染的防治技术及发展策略[J]. 科学技术创新, 2018(4):47-48.
ZHANG Yu. On the prevention technology and development strategy of urban water pollution[J]. Science and Technology Information, 2018(4):47-48.
[4] 徐莹. 高级氧化法耦合MBR处理醛类废水的研究[D]. 上海:华东理工大学, 2011: 8-41.
XU Ying. Study on the treatment of aldehyde wastewater by advanced oxidation coupled with MBR[D]. Shanghai: East China University of Science and Technology, 2011: 8-41.
[5] 程玉良. 活性炭材料的改性及其应用[J]. 中国科技信息, 2005,2(19):66-66.
CHENG Yuliang. Modification of activated carbon mateials and its application[J]. China Science and Technology Information, 2005,2(19):66-66.
[6] 易牡丹. 废旧电路板真空裂解炭制备活性炭的研究[D]. 长沙:中南大学, 2012: 11-26.
YI Mudan. Study on preparation of activated carbon by vacuum cracking of charcoal with waste circuit board[D]. Changsha: Central South University, 2012: 11-26.
[7] 吴倩. 纤维素、PAN基活性炭纤维的制备及其性能研究[D]. 武汉:武汉纺织大学, 2016: 3-39.
WU Qian. Preparation and properties of cellulose and PAN-based activated carbon fibers[D]. Wuhan: Wuhan Textile University, 2016: 3-39.
[8] 昂源, 贺奎, 董全霄, 等. 锌掺杂二氧化钛的制备及其催化降解亚甲基蓝[J]. 稀有金属材料与工程, 2016 (s1):360-364.
ANG Yuan, HE Kui, DONG Quanxiao, et al. Preparation of zinc-doped titanium dioxide and its catalytic degradation of methylene blue[J]. Rare Metal Materials and Engineering, 2016(s1):360-364.
[9] 孔黎明, 张婷, 王佩德, 等. 活性炭纤维吸附石化废水中苯酚的吸附平衡及动力学[J]. 化工学报, 2015,66(12):4874-4882.
KONG Liming, ZHANG Ting, WANG Peide, et al. Equilibrium and kinetics of phenol adsorption from petrochemical wastewater with activated carbon fiber[J]. CIESC Journal, 2015,66(12):4874-4882.
[10] 陶玥, 张峰, 陈思宇, 等. 载银活性炭纤维的结构表征与抗菌性能研究[J]. 纺织导报, 2014(12):47-50.
TAO Yue, ZHANG Feng, CHEN Siyu, et al. Structural characterization and antibacterial properties of the silver loaded activated carbon fiber[J]. China Textile Leader, 2014(12):47-50.
[11] 朱舜, 姚玉元, 林启松, 等. 活性炭纤维负载金属铂的制备及催化氧化甲醛[J]. 纺织学报, 2014,35(2):1-5.
ZHU Shun, YAO Yuyuan, LIN Qisong, et al. Catalytic oxidation of formaldehyde by activated carbon fibers supported platinum[J]. Journal of Textile Research, 2014,35(2):1-5.
[12] LIU R F, LI W B, PENG A Y. A facile preparation of TiO2/ACF with Csbnd Ti bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal[J]. Applied Surface Science, 2018,427:608-616.
[13] CHEN H, DU Y, LU Q, et al. Microwave-assisted rapid synjournal of Mn3O4/ACF hybrid for high efficient As(V) removal[J]. Chemical Engineering Research & Design, 2017,674:399-405.
[14] 李国亭, 冯艳敏, 柴晓琪, 等. 镧改性活性炭纤维高效吸附去除对苯醌[J]. 环境工程学报, 2016,10(4):1638-1644.
LI Guoting, FENG Yanmin, CHAI Xiaoqi, et al. Efficient adsorptive removal of p-benzoquinone by lanthanum modified activated carbon fibre[J]. Chinese Journal of Environmental Engineering, 2016,10(4):1638-1644.
[15] 张世春, 刘海宁, 王世栋, 等. 活性炭纤维电极对Mg2+、Ca2+的电吸附行为研究[J]. 盐科学与化工, 2017,46(11):21-23.
ZHANG Shichun, LIU Haining, WANG Shidong, et al. Research on electrosorption for Mg2 + and Ca2 + by activated carbon fiber electrodes[J]. Journal of Salt Science and Chemical Industry, 2017,46(11):21-23.
[16] 陈明燕, 丁悦, 刘宇程 . 等. 超声辅助酸碱改性活性炭纤维DBT脱硫性能的研究[J]. 石油与天然气化工, 2018,47(1):7-12,25.
CHEN Mingyan, DING Yue, LIU Yucheng, et al. Study on DBT desulfurization performance with activated carbon fiber modified by ultrasonic assisted acid-alkali[J]. Chemical Engineering of Oil & Gas, 2018,47(1):7-12,25.
[17] OTHMAN F E C, YUSOF N, HASBULLAH H, et al. Polyacrylonitrile/magnesium oxide-based activated carbon nanofibers with well-developed microporous structure and their adsorption performance for methane[J]. Journal of Industrial & Engineering Chemistry, 2017,51:281-287.
[18] DINCER K, WAISI B, ÖNAL G, et al. Investigation of optical and dispersion parameters of electrospinning grown activated carbon nanofiber (ACNF) layer[J]. Synthetic Metals, 2018,237:16-22.
[19] BANERJEE S, PILLAI S C, FALARAS P, et al. New insights into the mechanism of visible light photocata-lysis[J]. Journal of Physical Chemistry Letters, 2014,5(15):2534-2555.
[20] 陈琳, 杨苏东, 王传义, 等. 二氧化钛光催化材料及其改性技术研究进展[J]. 离子交换与吸附, 2013,29(1):86-96.
CHEN Lin, YANG Sudong, WANG Chuanyi, et al. Advance in preparation and modification of photocata-lytic materials made from titanium doxide[J]. Ion Exchange and Adsorption, 2013,29(1):86-96.
[21] PARK H, PARK Y, KIM W, et al. Surface modification of TiO2, photocatalyst for environmental applications[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2013,15(1):1-20.
[22] JORGE L G M, MINERVA V R, LAURA H R. Photocatalytic semiconductors[M]. London, Macmillan, 2015: 229.
[23] LAN Y, LU Y, REN Z. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applica-tions[J]. Nano Energy, 2013,2(5):1031-1045.
[24] BET-MOUSHOUL E, MANSOURPANAH Y, FARHADIN K, et al. TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes[J]. Chemical Engineering Journal, 2016,283:29-46.
[25] 樊雪敏, 白春华, 李光辉, 等. 纳米二氧化钛光催化剂共掺杂的研究进展[J]. 无机盐工业, 2016,48(10):7-10.
FAN Xuemin, BAI Chunhua, LI Guanghui, et al. Research progress in co-doping modification of nano TiO2 photocatalysts[J]. Inorganic Chemicals Industry, 2016,48(10):7-10.
[26] FUIJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38.
doi: 10.1038/238037a0 pmid: 12635268
[27] FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. Journal of American Chemical Society, 1977(99):303-304.
[28] CAREY J H, LAWRENCE J, TOSINE H M. Photodech- lorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976,16(6):697-701.
doi: 10.1007/BF01685575 pmid: 828069
[29] ETHERI V, VALENTIN C D, SCHNEIDER J, et al. Visiblelight activation of TiO2 photocatalysts: advances in theory and experiments[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015(5):1-9.
[30] 张莹, 燕宁宁, 朱忠其, 等. Ag-TiO2光催化剂的制备、性能及机理研究[J]. 功能材料, 2013,44(2):172-176.
ZHANG Ying, YAN Ningning, ZHU Zhongqi, et al. Preparation,properties and mechanism of Ag-TiO2 photocatalyst[J]. Journal of Functional Materials, 2013,44(2):172-176.
[31] 吴苗苗, 李洛阳, 刘佳昊, 等. Ti02/ACF复合光催化材料研究进展[J]. 功能材料, 2017,48(10):10001-10008.
WU Miaomiao, LI Mingyang, LIU Jiahao, et al. Progress in research of TiO2/ACF composite photocatalytic materials[J]. Journal of Functional Materials, 2017,48(10):10001-10008.
[32] 王中华, 刘明源, 袁鹰, 等. TiO2/ACF光催化降解甲基橙废水性能研究[J]. 化工新型材料, 2016(12):177-179.
WANG Zhonghua, LIU Mingyuan, YUAN Ying, et al. Study on photocatalytic activity of TiO2-loaded activated carbon fiber for degradation of methyl orange[J]. New Chemical Materials, 2016(12):177-179.
[33] SMARZEWSKA S, MIEKOS E, GUZIEJEWSKI D, et al. Graphene oxide activation with a constant magnetic field[J]. Analytica Chimica Acta, 2018,1011:35-39.
doi: 10.1016/j.aca.2018.01.051 pmid: 29475483
[34] LINLEY S, LIU Y Y, PTACEK C J, et al. Recyclable graphene oxide-supported titanium dioxide photocatalysts with tunable properties[J]. Acs Applied Materials & Interfaces, 2014,6(7):4658-4668.
doi: 10.1021/am4039272 pmid: 24593830
[35] WANG P, WANG J, WANG X, et al. One-step synjournal of easy-recycling TiO2-rGO nanocomposite photoca-talysts with enhanced photocatalytic activity[J]. Applied Catalysis B Environmental, 2013,132(12):452-459.
[36] WANG G, FENG W, ZENG X, et al. Highly recoverable TiO2-GO nanocomposites for stormwater disinfection[J]. Water Research, 2016,94:363-370.
doi: 10.1016/j.watres.2016.02.067 pmid: 26991482
[37] ZHEN Q, GAO L, SUN C, et al. Honeycomb-like TiO2@GO nanocomposites for the photodegradation of oxytetracycline[J]. Materials Letters, 2018,228(1):318-321.
[38] KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Using graphene/TiO2nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity[J]. Cellulose, 2014,21(5):3813-3827.
[39] 潘卉, 赵甜, 张予东, 等. 氧化钛/氧化石墨纳米复合材料的制备、表征及性能[J]. 物理化学学报, 2013,29(3):660-666.
PAN Hui, ZHAO Tian, ZHANG Yudong, et al. Preparation, characterization and properties of titania/graphite oxide nanocomposite[J]. Acta Physico-Chimica Sinica, 2013,29(3):660-666.
[40] RAGUPATHY S, RAGHU K, PRABU P. Synjournal and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015,138:314-320.
[41] 胡小雨, 蒋秋冉, 魏毅, 等. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报, 2018,35(7):1691-1699.
HU Xiaoyu, JIANG Qiuran, WEI Yi, et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica, 2018,35(7):1691-1699.
[42] LUO Q, BAO L, WANG D, et al. Preparation and strongly enhanced visible light photocatalytic activity of TiO2 nanoparticles modified by conjugated derivatives of polyisoprene[J]. The Journal of Physical Chemistry C, 2012,116(49):25806-25815.
[43] 陈龙. 载铁活性炭纤维的制备及其用于Fenton体系降解罗丹明B和除氟的研究[D]. 武汉:武汉理工大学, 2014: 5-46
CHEN Long. Preparation of Fe-modified activated carbon fiber and its applications for Fenton degradation of Rhodamine B and adsorption of fluoride[D]. Wuhan: Wuhan University of Technology, 2014: 5-46.
[1] LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147.
[2] HE Xuemei, MAO Haiyan, CAI. Adsorption performance of chitosan based hybrid aerogel on reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 148-155.
[3] CHENG Lüzhu, WANG Zongqian, WANG Dengfeng, SHEN Jiakun, LI Changlong. Preparation of highly hollow biomass-based activated carbon fiber and its adsorption property to methylene blue [J]. Journal of Textile Research, 2021, 42(02): 129-134.
[4] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[5] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[6] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[7] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[8] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[9] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots/polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[10] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[11] WANG Jiankun, JIANG Xiaodong, GUO Jing, YANG Lianhe. Research progress of functionalized graphene oxide adsorption materials [J]. Journal of Textile Research, 2020, 41(04): 167-173.
[12] MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide [J]. Journal of Textile Research, 2020, 41(03): 15-19.
[13] YI Ling, ZHANG He, FU Xin, LI Wen. Preparation and far-infrared emission performance of graphene based zirconium/titanium composites modified cotton fabrics [J]. Journal of Textile Research, 2020, 41(01): 102-109.
[14] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose/graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[15] MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan. Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric [J]. Journal of Textile Research, 2019, 40(11): 125-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!