Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 1-8.doi: 10.13475/j.fzxb.20181004508

• Fiber Materials •     Next Articles

Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers

ZHANG Jiao1,2, GAO Xuefeng1,2, WANG Yuzhou1,2, LIU Haihui1,2,3, ZHANG Xingxiang1,2,3()   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, Tiangong University, Tianjin 300387, China
    3. Key Laboratory of Advanced Textile Composites of Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2018-10-25 Revised:2019-08-24 Online:2019-11-15 Published:2019-11-26
  • Contact: ZHANG Xingxiang E-mail:zhangpolyu@aliyun.com

Abstract:

In order to improve the mechanical properties of polyamide 66 (PA66) fiber, carboxylated multi-walled carbon nanotubes (CMWNTs) were condensed with ethylenediamine (EA) to obtain amino-functionalized multi-walled carbon nanotubes (AMWNTs), and AMWNTs doped PA66 composites (PACNTs) were prepared by in-situ polymerizing AMWNTs with polyamide 66 salt. Furthermore, the composites were melt-spun into fibers. The fibers were characterized using thermogravimetry, differential scanning calorimeter, X-ray diffraction and single fiber strength tester. The results show that, the melting temperature of the PACNTs fiber moves toward the low temperature direction as the content of AMWNTs increases, the addition of AMWNTs lowers the molecular weight of PA66, and the crystallization temperature of the PACNTs fiber moves toward the high temperature direction as a result of AMWNTs acting as a heterogeneous nucleation agent. The tensile strength and elastic modulus of the PACNTs fiber increase with increasing the content of AMWNTs. The tensile strength and elastic modulus of PACNTs fiber reach the maximum when the mass fraction of AMWNTs is 0.5%, which increase by approximately 157% and 455% as compared with those of PA66, respectively.

Key words: multi-walled carbon nanotube, polyamide 66, in-situ polymerization, fiber, mechanical property

CLC Number: 

  • TQ342.12

Fig.1

FT-IR spectra of CMWNTs and AMWNTs"

Fig.2

Raman spectra of CMWNTs and AMWNTs"

Fig.3

Full-scale XPS spectra of CMWNTs and AMWNTs"

Fig.4

C1s spectra of CMWNTs (a) and AMWNTs (b)"

Tab.1

Solubility parameters of various solvents of AMWNTsMPa1/2"

溶剂 δd δp δh δ
DMF 17.4 13.7 11.3 26.6
DMSO 18.4 16.4 10.2 26.7
DMAc 16.8 11.5 10.2 22.8
THF 16.8 5.7 8.0 19.4
Ethanol 15.8 8.8 19.4 26.5
NMP 16.8 12.3 7.2 22.9
FA 14.3 11.9 16.6 24.9
EAC 15.8 5.3 7.2 17.9
DMK 15.5 10.4 7.0 19.9

Fig.5

TGA curves of PA66 and PACNTs fiber with different mass fraction of AMWNTs"

Fig.6

DSC heating curves (a) and cooling curves (b) of PACNTs fiber with different mass fraction of AMWNTs"

Fig.7

TGA curves of PAA with different mass fraction of AMWNTs"

Tab.2

Molecular weights of PA66 and FRPA66 with different mass fraction of AMWNTs"

AMWNTs质量分数/% 相对黏度 Mη/(g·mol-1)
PA66 2.78 1.84×104
0.1 2.56 1.54×104
0.3 2.52 1.48×104
0.5 2.42 1.34×104
1.0 2.24 1.08×104

Tab.3

Crystallization parameters of PA66 and PACNTs fiber"

AMWNTs质量
分数/%
Tm/℃ Tc/℃ ΔHc/(J·g-1) Xc/%
PA66 269.2 220.6 59.70 31.76
0.1 260.4 229.8 76.64 40.77
0.3 261.1 230.3 76.94 40.93
0.5 259.6 230.0 86.85 46.20
1.0 257.0 227.6 61.48 32.70

Fig.8

XRD patterns of PA66 and PACNTs fiber with different mass fraction of AMWNTs"

Fig.9

Tensile strength and elastic modulus of PACNTs fiber with different mass fraction of AMWNTs"

[1] ZHOU Longfei, LIU Haihui, ZHANG Xingxiang. Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers[J]. Journal of Materials Science, 2015,50(7):2797-2805.
[2] FAGHIHI Morteza, SHOJAEI Akbar, BAGHERI Reza. Characterization of polyamide 6/carbon nanotube composites prepared by melt mixing-effect of matrix molecular weight and structure[J]. Composites Part B: Engineering, 2015,78:50-64.
doi: 10.1016/j.compositesb.2015.03.049
[3] NEVES J C, DECASSTRO V G, ASSIS A L S, et al. In-situ determination of amine/epoxy and carboxylic/epoxy exothermic heat of reaction on surface of modified carbon nanotubes and structural verification of covalent bond formation[J]. Applied Surface Science, 2018,436:495-504.
[4] AJAYAN P M, SCHADLER L S, GIANNARIS C, et al. Single-walled carbon nanotube-polymer composites: strength and weakness[J]. Advanced Materials, 2000,12(10):750-753.
doi: 10.1002/(ISSN)1521-4095
[5] GROMOV A, ITTMER S, SVENSSON J J, et al. Covalent amino-functionalisation of single-wall carbon nanotubes[J]. Journal of Materials Chemistry, 2005,15(32):3334.
[6] TASIS Dimitrios, TAGMATARCHIS Nikos, BIANCO Alberto, et al. Chemistry of carbon nanotubes[J]. Chemical Reviews, 2006,106(3):1105-1136.
doi: 10.1021/cr050569o pmid: 16522018
[7] PELECH Iwona, KWIATKOWSKA Magdalena, JEDRZEJEWSKA Annae, et al. Thermal and mechanical properties of polyamide 12/modified carbon nanotubes composites prepared via the in situ ring-opening polymerization[J]. Polimery, 2017,62:101-108.
doi: 10.14314/polimery
[8] CHEN Xianhong, WANG Jianfeng, LIN Ming, et al. Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes[J]. Materials Science and Engineering A, 2008,492(1-2):236-242.
doi: 10.1016/j.msea.2008.04.044
[9] MENG H, SUI G X, FANG P F, et al. Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6[J]. Polymer, 2008,49(2):610-620.
[10] SAITO T, MATSUSHIGE K, TANAKA K. Chemical treatment and modification of multi-walled carbon nanotubes[J]. Physica B: Condensed Matter, 2002,323(1-4):280-283.
[11] RAMANATHAN T, FISHER F T, RUOFF S R, et al. Amino-functionalized carbon nanotubes for binding to polymers and biological systems[J]. Chemistry of Materials, 205, 17(6):1290-1295.
[12] JR Hoeard Starkweather, JONES Glover A. Crystalline transitions in powders of nylon 66 crystallized from solution[J]. Journal of Polymer Science: Polymer Chemistry, 1981,19(3):467-477.
[13] HANSEN Charlesm. Hansen Solubility Parameters: A User's Handbook[M]. 2nd ed. New York: CRC Press, 2007: 289-303.
[14] XIAO Linhong, XU Linli, YANG Yuying, et al. Core-ahell atructured polyamide 66 nanofibers with enhanced flame retardancy[J]. ACS Omega, 2017,2(6):2665-2671.
pmid: 31457608
[15] ZHOU Longfei, LIU Haihui, ZHANG Xingxiang. Poly(styrene-maleic anhydride) functionalized graphene oxide[J]. Journal of Applied Polymer Science, 2015,132(22):41987.
[16] NAVIDFAR Amir, SANCAK Alkan, YILDIRIM Kemal Baran, et al. A Study on polyurethane hybrid nanocomposite foams reinforced with multiwalled carbon nanotubes and silica nanoparticles[J]. Polymer: Plastics Technology and Engineering, 2017(12):1-11.
[17] LIU Haihui, HOU Lichen, PENG Weiwei, et al. Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber[J]. Journal of Materials Science, 2012,47(23):8052-8060.
[18] RATHI Sudesh, DAHIYA J B. Polyamide 66/nanoclay composites: synjournal, thermal and flammability properties[J]. Advanced Materials Letters, 2012,3(5):381-387.
doi: 10.5185/amlett
[19] ZHANG Xiang, LI Yubao, LV Guoyu, et al. Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites[J]. Polymer Degradation and Stability, 2006,91(5):1202-1207.
[20] BELL J P, SLADE P E, DUMBLETON J H. Multiple melting in nylon 66[J]. Journal of Polymer Science: Polymer Physics, 1968,6(10):1773-1781.
[21] XU Zhen, GAO Chao. In situ polymerization approach to graphene-reinforced nylon-6 composites[J]. Macromolecules, 2010,43(16):6716-6723.
[22] ZHANG Xingxiang, MENG Qingjie, WANG Xuechen, et al. Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites[J]. Journal of Materials Science, 2010,46(4):923-930.
doi: 10.1007/s10853-010-4836-2
[23] LI Yuanyuan, LIU Ke, XIAO Ru. Preparation and characterization of flame-retarded polyamide 66 with melamine cyanurate by in situ polymerization[J]. Macromolecular Research, 2017,25(8):779-785.
[24] ZHANG Guosheng, YAN Deyue. Crystallization kinetics and melting behavior of nylon 10,10 in nylon 10,10-montmorillonite nanocomposites[J]. Journal of Applied Polymer Science, 2003,88(9):2181-2188.
[25] 李晓川, 瞿芊芊, 李旭明. 熔融纺聚乳酸/聚丙烯纤维的制备及其性能[J]. 纺织学报, 2019,40(3):8-12.
LI Xiaochuan, QU Qianqian, LI Xuming. Preparation and properties of polylactic acid/polypropylene blend fiber by melt spunning[J]. Journal of Textile Research, 2019,40(3):8-12.
[26] 黄廷健, 牟浩, 阳知乾, 等. 高强高模聚甲醛纤维的制备及其性能[J]. 纺织学报, 2018,39(10):1-6.
HUANG Tingjian, MOU Hao, YANG Zhiqian, et al. Preparation and properties of high strength and high modulus polyformaldehyde fibers[J]. Journal of Textile Research, 2018,39(10):1-6.
[27] LIU Xiaohui, WU Qiuju, BERGLUND Lars A. Polymorphism in polyamide 66/clay nanocomposites[J]. Polymer, 2002,43(18):4967-4972.
[1] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[2] GUAN Fucheng, GUO Jing, LÜ Lihua, TAN Qian, SONG Jingxing, ZHANG Xin. Hydrogen bonding mechanism and properties of polyvinyl alcohol / krill protein fibers [J]. Journal of Textile Research, 2020, 41(10): 7-13.
[3] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[4] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process [J]. Journal of Textile Research, 2020, 41(10): 20-28.
[5] QIN Yimin. Clinical applications of silver containing alginate wound dressings [J]. Journal of Textile Research, 2020, 41(09): 183-190.
[6] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[7] HU Wen, WANG Di, CHEN Xiaochuan, WANG Jun, LI Yong. Finite element simulation of cotton serrated ginning state based on cottonseed modeling [J]. Journal of Textile Research, 2020, 41(09): 27-32.
[8] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[9] MEI Shuo, LI Jinchao, LU Shiyan, XIAO Changfa, YANG Yong, FENG Xiangwei. Preparation and properties of high strength polyvinyl chloride hollow fiber membrane [J]. Journal of Textile Research, 2020, 41(09): 16-20.
[10] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[11] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[12] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[13] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[14] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[15] ZHAN Liuxiang, LI Wan, WANG Gaojun, ZHAO Xianli, WANG Ni, LI Yuling. Applied research progress of microwave treatment in protein fiber processing [J]. Journal of Textile Research, 2020, 41(08): 128-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!