Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 130-135.doi: 10.13475/j.fzxb.20181005306

• Apparel Engineering • Previous Articles     Next Articles

Effect of heating area of electric heating socks on foot temperature

LIU Yongmei1, XIAO Ping1,2,3(), FAN Yawen1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Institute of Design and Innovation, Tongji University, Shanghai 200092, China
  • Received:2018-10-30 Revised:2019-08-23 Online:2020-02-15 Published:2020-02-21
  • Contact: XIAO Ping E-mail:xiaoping@dhu.edu.cn

Abstract:

In order to explore the effect of different heating areas of electric heating socks on the warming of the foot, the foot/sock area was divided according to the physiological characteristics of the foot and the structural characteristics of the socks. Three areas including the front instep, the front of the sole and the middle of the sole were selected as the heating area, and six socks with the single heating area and double heating areas were designed. The infrared camera and Laser-Doppber Flowmetry(LDF) were used to detect the temperature change and blood perfusion of the surface of each area when the foot was wearing different styles of electric heating socks, and the effect of warming the foot was quantified. Experiments show that although the styles of electric heating socks are different, they all have the effect of keeping warm. The temperature rise in the foot area corresponding to the heat-generating sheet is the most obvious, followed by the adjacent area. The single heating area has little effect on the microcirculation of foot blood vessels, and the combination of sole heating is better than the combination of the front instep and the sole in the double region.

Key words: electric heating sock, foot area, infrared camera, Laser-Doppler Flowmetry, temperature, blood perfusion

CLC Number: 

  • TS941.7

Fig.1

Schematic diagram of foot/socks division A—足背前部;B—足背后部;C—足底前部;D—足底中部;E—足底后部。"

Tab.1

Instructions of foot/socks division"

划分区域 划分说明
足背前部 足尖至跖围与足背交线,主要对应袜头面部
足背后部 跖围与足背交线至兜围与足面交线,
主要对应袜面中后部
足底前部 足尖至跖围与足底面交线,主要对应袜头底部
足底中部 跖围与足底面交线至跗围与足底面交线,
主要对应袜底中部
足底后部 跗围与足底面交线至兜围与足底面交线,
主要对应袜跟

Tab.2

Experimental socks and instructions"

发热
区域数
编号 发热
区域
实验袜品说明
单区域
发热
1# A 袜子对应足背前部放置发热片
2# C 袜子对应足底前部放置发热片
3# D 袜子对应足底中部放置发热片
双区域
发热
4# A+C 袜子对应足背前部、足底前部放置发热片
5# A+D 袜子对应足背前部、足底中部放置发热片
6# C+D 袜子对应足底前部、足底中部放置发热片

Tab.3

Key data of experimenter's footcm"

编号 足长 足宽 跖围 跗围 兜围
1 22.2 8.4 21.1 21.9 27.1
2 22.0 8.1 20.0 21.5 26.0
3 21.8 8.5 22.0 23.0 27.9

Fig.2

Infrared thermal image of foot"

Tab.4

Foot temperature before and after experiment wearing different socks℃"

袜子
编号
A B C D E
参照组 实验组 参照组 实验组 参照组 实验组 参照组 实验组 参照组 实验组
1# 24.4 34.9 27.1 27.3 24.8 24.9 25.4 25.2 25.5 25.1
2# 23.9 23.9 26.7 26.5 23.4 30.2 24.8 25.5 25.6 25.2
3# 24.4 24.7 27.5 27.6 24.4 24.1 25.2 29.7 25.2 25.9
4# 23.9 34.7 26.6 27.1 24.0 30.9 25.6 25.6 24.9 24.3
5# 23.7 34.2 26.0 26.7 24.2 24.3 24.7 31.1 24.0 24.4
6# 24.2 24.4 26.3 26.3 24.1 31.7 24.6 32.7 24.4 25.1

Tab.5

Result of paired sample T test"

款式 均值 标准差 p
1#-1# 2.013 3 4.391 7 0.098*
2#-2# 1.353 3 2.819 5 0.084*
3#-3# 1.086 7 1.863 1 0.040**
4#-4# 3.533 3 4.743 8 0.012**
5#-5# 3.606 7 4.331 7 0.006***
6#-6# 3.320 0 3.924 0 0.006***

Fig.3

Temperature difference for different foot areas and different experimental socks"

Tab.6

Ratio of posterior-anterior blood perfusion under different heating combinations"

发热
区域数
袜子
编号
不同足部区域的F/F0
P1 P2 P3 P4
单区域 1# 1.64±0.48 0.95±0.08 1.02±0.07 1.17±0.15
2# 1.34±0.28 1.23±0.03 1.25±0.24 1.05±0.14
3# 1.02±0.28 1.59±0.31 1.20±0.04 1.31±0.45
双区域 4# 1.47±0.57 1.11±0.22 1.14±0.02 0.96±0.04
5# 1.15±0.02 0.98±0.01 1.11±0.05 0.90±0.08
6# 1.28±0.25 1.29±0.26 1.58±0.10 1.17±0.09
[1] 丘理, 张利国, 张哲, 等. 鞋楦设计教程[M].2版. 北京:中国轻工业出版社, 2014: 40.
QIU Li, ZHANG Liguo, ZHANG Zhe, et al. Shoe last design course[M]. 2nd ed. Beijing:China Light Industry Press, 2014: 40.
[2] WANG F, GAO C, HOLMÉR I . Effects of air velocity and clothing combination on heating efficiency of an electrically heated vest (EHV): a pilot study.[J]. Journal of Occupational & Environmental Hygiene, 2010,7(9):501.
doi: 10.1080/15459624.2010.486696 pmid: 20552501
[3] 柯莹, 张向辉. 电加热服结构及其性能评价方法[J]. 纺织导报, 2016(11):122-123.
KE Ying, ZHANG Xianghui. Methods for evaluating the structure and properties of electrically heated gar-ment[J]. China Textile Leader, 2016(11):122-123.
[4] 程彦钧. 美国新开发的可加热保暖型智能衣[J]. 电子技术, 2007,34(2):13-17.
CHENG Yanjun. Newly developed heating and warming smart clothing in the United States[J]. Electronic Technology, 2007,34(2):13-17.
[5] 唐世君, 郭诗珧. 电加热服装的研制[J]. 中国个体防护装备, 2013(6):5-8.
TANG Shijun, GUO Shiyao. Development of electric heating clothing[J]. China Personal Protective Equipment, 2013(6):5-8.
[6] 宋丹丹, 李玉珍, 郭渝成, 等. 健康国人皮肤温度、血流灌注量及局部加热效应[J]. 微循环学, 2013,23(8):28-30.
SONG Ddandan, LI Yuzhen, GUO Yucheng, et al. Skin temperature, blood perfusion and local heating effect in healthy Chinese people[J]. Chinese Journal of Microcirculation, 2013,23(8):28-30.
[7] 任萍, 杨阳, 刘静. 人体足部传热数值模拟及加热实验[J]. 纺织学报, 2009,30(8):99-105.
REN Ping, YANG Yang, LIU Jing. Numerical simulation of heat transfer of human foot and heating experiments[J]. Journal of Textile Research, 2009,30(8):99-105.
[8] 吕叶馨. 冷环境对足部皮肤温感及人体生理指标的影响[D]. 杭州:浙江理工大学, 2017: 12-22.
LÜ Yexin. The impacts of cold environment on foot thermal sensation and human physiological indexes[D]. Hangzhou:Zhejiang Sci-Tech University, 2017: 12-22.
[9] 阮果清, 曾全寿, 郑志艺, 等. 持续性低强度运动下正常青年男性足部体表温度变化研究[J]. 浙江体育科学, 2013,35(4):66-69.
RUAN Guoqing, ZENG Quanshou, ZHENG Zhiyi, et al. The research of foot skin temperature in healthy youth under a persistent low-intensity exercise[J]. Zhejiang Sport Science, 2013,35(4):66-69.
[10] 轻工业部制鞋工业研究所. 中国鞋号及鞋楦设计[M]. 北京:中国轻工业出版社, 1988: 22-23.
Institute of Footwear Industry, Ministry of Light Industry. Design of Chinese shoe size and shoe last[M]. Beijing:China Light Industry Press, 1988: 22-23.
[11] 宋广礼, 蒋高明. 针织物组织与产品设计[M].2版. 北京:中国纺织出版社, 2008: 175-176.
SONG Guangli, JIANG Gaoming. Knitted fabric organization and product design[M]. 2nd ed. Beijing:China Textile & Apparel Press, 2008: 175-176.
[12] 奈特. 奈特人体解剖彩色图谱[M].王怀经,译. 3版. 北京: 人民卫生出版社, 2005: 516-517.
Knight. Knight's human anatomy color map[M].WANG Huaijing, Translating. 3rd ed. Beijing: People's Medical Publishing House, 2005: 516-517.
[13] 张文, 杨兵, 郑祥, 等. 红外测温过程中测试距离对测温精度的影响分析[J]. 自动化与仪器仪表, 2018(7):45-47.
ZHANG Wen, YANG Bing, ZHENG Xiang, et al. Analysis of the influence of measuring distance on temperature measurement accuracy in infrared temperature measurement[J]. Automation & Instrumentation, 2018(7):45-47.
[14] 柯宝珠, 花卉, 黄心洁, 等. 基于红外热成像技术的袜子热湿舒适性研究[J]. 山东纺织科技, 2015,56(5):1-5.
KE Baozhu, HUA Hui, HUANG Xinjie, et al. Thermal-wet comfort of socks based on infrared thermal imaging technology[J]. Shandong Textile Science & Technology, 2015,56(5):1-5.
[15] CHRISTOPHER T. Thermal provocation to evaluate microvascular reactivity in human skin[J]. Journal of Applied Physiology, 2010,109(4):1239-1246.
doi: 10.1152/japplphysiol.00414.2010 pmid: 20507974
[1] ZHANG Xuefei, LI Tingting, SHIU Bingchiuan, LIN Jiahorng, LOU Chingwen. Preparation of multifunctional core-shell structure thermoelectric fabrics by low-temperature interfacial polymerization [J]. Journal of Textile Research, 2021, 42(02): 174-179.
[2] LIU Mingxue, ZHAO Qian, WANG Xiaohui, LIU Qiongxi, SHAO Jianzhong. Bonding fastness of magnetron sputtering nano-films with various textile substrates [J]. Journal of Textile Research, 2021, 42(02): 135-141.
[3] YIN Juhui, GUO Jing, WANG Yan, CAO Zheng, GUAN Fucheng, LIU Shuxing. Preparation and properties of sodium alginate / krill protein scaffold materials [J]. Journal of Textile Research, 2021, 42(02): 53-59.
[4] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[5] DONG Dalin, BIN Yuezhen, JIAN Xigao. Preparation and properties of poly(phthalazinone ether ketone) fibers by dry spinning [J]. Journal of Textile Research, 2020, 41(12): 1-6.
[6] ZENG Yuhui, ZHANG Tingting, WANG Kezuo, HE Li, CHEN Yiren. Influence factors of color stability in finishing of natural colored cotton [J]. Journal of Textile Research, 2020, 41(08): 45-49.
[7] ZHANG Zhaohua, LI Luyao, AN Ruiping. Thermal-wet comfort evaluation of head and torso ventilation of pipe garment [J]. Journal of Textile Research, 2020, 41(08): 88-94.
[8] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane/phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[9] WU Daiwei, LI Hongyan, DAI Yanyang, SU Yun, WANG Yunyi. Thermal function effectiveness and location of heating device in cold protective clothing [J]. Journal of Textile Research, 2020, 41(06): 118-124.
[10] HUANG Qianqian, LI Jun. Research progress on mechanism of human thermal sensation under ambient temperature step change [J]. Journal of Textile Research, 2020, 41(04): 188-194.
[11] CHEN Hui, WANG Xi, DING Xin, LI Qiao. Design of temperature-sensitive garment consisting of full fabric sensing networks [J]. Journal of Textile Research, 2020, 41(03): 118-123.
[12] ZHENG Qing, WANG Hongfu, KE Ying, LI Shuang. Design and evaluation of cooling clothing by phase change materials for miners [J]. Journal of Textile Research, 2020, 41(03): 124-129.
[13] LIU Jun, LIU Kui, NING Bo, SUN Baozhong, ZHANG Wei. Bending properties of three-dimensional braided composite T-beam at low temperature [J]. Journal of Textile Research, 2019, 40(12): 57-62.
[14] YANG Jian, ZHANG Guoqing, LIU Guojin, KE Xiaoming, ZHOU Lan. Preparation of composite phase change microcapsules and its application on cotton fabrics [J]. Journal of Textile Research, 2019, 40(10): 127-133.
[15] LIN Jiameng, MIAO Xuhong, WAN Ailan. Influence of plasma pretreatment on structure and properties of polypyrrole/polyester warp knitted conductive fabric [J]. Journal of Textile Research, 2019, 40(09): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!