Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (02): 166-172.doi: 10.13475/j.fzxb.20181006107

• Management & Information • Previous Articles     Next Articles

Polyester drawn textured yarn production process optimization based on carbon emission accounting

SHAO Jingfeng1(), MA Chuangtao1, WANG Ruichao1, YUAN Yulou2, WANG Xiyao1, NIU Yifan1   

  1. 1. School of Management, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xianyang Textile Group Co., Ltd., Xianyang, Shaanxi 712000, China
  • Received:2018-10-31 Revised:2018-11-16 Online:2019-02-15 Published:2019-02-01

Abstract:

In order to solve the problem of no reasonable optimization of the production process due to the overlooking dynamic energy consumption in the differential fiber production process, the production process and energy consumption of the differential fiber production process were firstly analyzed, and the energy consumption metering and accounting model based on carbon footprint was built. Then, the carbon emission function based on green low carbon was designed based on the energy carbon consumption, material carbon consumption and process carbon consumption. Furthermore, the polyester low elastic production was selected as the research object, and a process optimization model of the polyester low elastic filament based on carbon emission accounting was designed. Finally, on the basis of historical data, the process optimization model was solved. The results show that the model optimizes the key process parameters of the differential fiber production process, and the carbon emission of the polyester low elastic filament production decreases by 13.35%.

Key words: polyester low elastic filament, process optimization, differential fiber, carbon emission function

CLC Number: 

  • TQ340.69

Fig.1

Model for energy calculation of texturing process based on carbon footprint in polyester drawn textured yarn production"

Fig.2

Texturing process flow"

Tab.1

Interval of the experimental factors in texturing process"

编号 因子名称 区间下限 区间上限
1 油轮转速Vo /(r·min-1) 0.3 0.8
2 油尺高度Ho /mm 180 280
3 加工速度Sm /(m·min-1) 550 750
4 变形热箱温度Tf /℃ 170 185
5 定型热箱温度Ts /℃ 140 155

Tab.2

Table of experimental factors horizontal coding after linear transformation"

编号 因子名称 水平编码
-1 0 1
1 油轮转速Vo /(r·min-1) 0.3 0.55 0.8
2 油尺高度Ho /mm 180 230 280
3 加工速度Sm /(m·min-1) 550 650 750
4 变形热箱温度Tf / ℃ 170 177.5 185
5 定型热箱温度Ts /℃ 140 147.5 155

Tab.3

Coefficient of carbon emission in polyester drawn texturing yarn production process"

名称 单位 数值 说明
电能碳排放系数fe kg/(kW·h) 0.977 西北地区电碳排放系数
油剂碳排放系数fo kg/L 0.047 以白油为对象进行核算
油剂废气碳排放系数fg kg/m3 0.5 以挥发性有机物为对象

Tab.4

Electricity consumption parameters for texturing process"

设备 功率/
kW
设备台数/发
热丝条数
电能消耗
量/(kW·h)
加弹机电动机 118 1 118
变形发热丝 4 20 80
定型发热丝 2.4 10 24
空压机电动机 18.5 1 18.5
引风机电动机 5.5 1 5.5

Fig.3

Graph of residuals distribution"

Fig.4

Results of response surface analysis"

Tab.5

Optimized technical parameters"

工艺参数名称 优化后的工艺参数值
油轮转速Vo / (r·min-1) 0.55
油尺高度Ho / mm 230
加工速度Sm / (m·min-1) 650
变形热箱温度Tf / ℃ 177.5
定型热箱温度Ts / ℃ 147.5
[1] KHAYYAM H, NAEBE M, BAB-HADIASHAR A, et al. Stochastic optimization models for energy management in carbonization process of carbon fiber production[J]. Applied Energy, 2015,158(31):643-655.
[2] RAILEANU S, ANTON F, IATAN A, et al. Resource scheduling based on energy consumption for sustainable manufacturing[J]. Journal of Intelligent Manufacturing, 2017,28(7):1519-1530.
[3] WANG Yi, DING Yongsheng, HAO Kuangrong, et al. Performance prediction of differential fibers with a bi-directional optimization approach[J]. Materials, 2013,6(12):5967-5985.
doi: 10.3390/ma6125967 pmid: 28788433
[4] KIYONO C Y, SILVA E C N, REDDY J N. A novel fiber optimization method based on normal distribution function with continuously varying fiber path[J]. Composite Structures, 2017,160:503-515.
[5] 邓志文. 差别化纤维梳理和质量控制的新思路[J]. 辽东学院学报(自然科学版), 2018,25(1):16-23.
DENG Zhiwen. New thinking on carding and quality control of differential fiber[J]. Journal of Liaodong University(Natural Sciences), 2018,25(1):16-23.
[6] 高菁. 甲壳素纤维天丝精梳长绒棉混纺纱的生产实践[J]. 轻纺工业与技术, 2016,45(3):8-10.
GAO Jing. Production practice of the long-staple cotton blended yarn for polysaccharide chitin fibre[J]. Qingfang Gongye Yu Jishu, 2016,45(3):8-10.
[7] 刘梦雨. 清梳联纺差别化纤维降低棉结的技术探讨[J]. 辽东学院学报(自然科学版), 2015,22(3):172-174.
LIU Mengyu. Technology of reducing neps in differential fiber of blow-card spinning[J]. Journal of Liaodong University(Natural Sciences), 2015,22(3):172-174.
[8] 刘笑莹, 方斌, 朱守艾, 等. 棉/大麻纤维混纺低损耗工艺优化[J]. 纺织学报, 2017,38(1):35-39.
LIU Xiaoying, FANG Bin, ZHU Shouai, et al. Low-loss optimization of cotton/hemp blending process[J]. Journal of Textile Research, 2017,38(1):35-39.
[9] 孙成龙, 李振瀚, 张玉明, 等. 基于机床反馈数据和工艺知识的进给速度优化[J]. 机械制造, 2017,55(9):76-80.
SUN Chenglong, LI Hanyu, ZHANG Yuming, et al. Optimization method for feed rate of machine tool based on the feedback data and technical knowledge[J]. Machinery, 2017,55(9):76-80.
[10] 舒服华. 基于灰色关联的针刺涤纶防水胎基工艺参数优化[J]. 产业用纺织品, 2017,35(3):32-38.
SHU Fuhua. Optimization of process parameters of needling polyester water proof membrane base by means of grey correlation[J]. Technical Textiles, 2017,35(3):32-38.
[11] 郭春花. 立足前沿明晰未来[J]. 纺织服装周刊, 2016,18(23):24-25.
GUO Chunhua. Clarify future based on frontier technology Textile[J]. Textile Apparel Weekly, 2016,18(23):24-25.
[12] 王来力, 丁雪梅, 吴雄英. 纺织产品碳足迹研究进展[J]. 纺织学报, 2013,34(6):113-119.
WANG Laili, DING Xuemei, WU Xiongying. Research progress of textile carbon footprint[J]. Journal of Textile Research, 2013,34(6):113-119.
[13] NIGAM M, MANDADE P, CHANANA B, et al. Energy consumption and carbon footprint of cotton yarn production in textile industry[J]. International Archive of Applied Sciences and Technology, 2016,7(1):6-12.
[14] 李一, 王君涛, 王来力. 牛仔裤工业碳足迹核算与评价示范[J]. 现代纺织技术, 2017,25(6):58-61.
LI Yi, WANG Juntao, WANG Laili. Demonstration of carbon footprint assessment of jean industry[J]. Advanced Textile Technology, 2017,25(6):58-61.
[15] 童庆蒙, 沈雪, 张露, 等. 基于生命周期评价法的碳足迹核算体系:国际标准与实践[J]. 华中农业大学学报(社会科学版), 2018,188(1):46-57,158.
TONG Qingmeng, SHEN Xue, ZHANG Lu, et al. Calculation system for carbon footprint based on evaluate method of the lifecycle: international standard and practice[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2018,188(1):46-57,158.
[16] 潘鑫. 求解黑箱函数全局优化问题的组合响应面法[J]. 高等学校计算数学学报, 2014,36(4):313-326.
PAN Xin. A combinational response surface method for optimization of black box functions[J]. Numerical Mathematics A Journal of Chinese Universities, 2014,36(4):313-326.
[17] TIAN Youquan, LIU Qiong. The Study about the calculation method of product carbon footprint during the flow manufacturing process[J]. Journal of Low Carbon Economy, 2014,3(1):1-6.
[18] 李青青, 苏颖, 尚丽, 等. 国际典型碳数据库对中国碳排放核算的对比分析[J]. 气候变化研究进展, 2018,14(2):1-6.
LI Qingqing, SU Ying, SHANG Li, et al. Comparison analysis of China's emissions accounting by typical international carbon databases[J]. Progressus Inquisitiones DE Mutatione Climatis, 2018,14(2):1-6.
[1] . Influence of peoduct development process of fast fashion brand on time performance [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 113-119.
[2] . Process and optimization of carding process of pure super-short cashmere on worsted system [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 28-0.
[3] JI Tao, LI Jie, GAO Qiang, YU Jin, LIU Qi-Xia. Preparation and process optimization of viscose-based carbonized fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(4): 49-54.
[4] XUE Weiwei;ZHAI Qiumei;XUEYongchang;ZHENG Laijiu. Optimizing microorganism degumming process of Apocynum [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(04): 80-84.
[5] WU Hui;QIAN Guodi;HUA Zhaozhe;YAN Hejing;ZHANG Chaohui;DU Guocheng;CHEN Jian. Optimization of scouring of knitted cotton fabrics with a new-type alkaline pectinase [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 59-63.
[6] WU Sui-ju;JI Xiao-lei;QIAN Qing-yu. Investigation of siro cotton/Spandex core-spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 80-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!