Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 106-112.doi: 10.13475/j.fzxb.20181100107

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics

WANG Fanghe1, WANG Rui1(), WEI Lifei2, WANG Zhaoying1, ZHANG Anying1, WANG Deyi3   

  1. 1. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
    3. IMDEA Materials Institute, Madrid 28906, Spain
  • Received:2018-11-01 Revised:2019-08-18 Online:2019-11-15 Published:2019-11-26
  • Contact: WANG Rui E-mail:clywangrui@bift.edu.cn

Abstract:

In order to solve the problem of droplet of flame retardant polyester fabrics, ionic monomers acrylic acid (AA) were grafted on the surface of flame-retardant polyester fabric in the presence of 1-hydroxycyclohexyl benzophenone as photoinitiator under the irradiation of ultraviolet light (UV). After that, γ-Aminopropyl triethoxysilane (KH-550) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) were designed as an anti-droplet system and flame retardant anti-drop polyester fabric was fabricated by layer-by-layer self-assembly on the grafted fabric surface. The morphologies, thermal properties and combustion properties of the fabrics before and after self-assembly were characterized. The results showed when the initiator mass fraction is 4%, the AA mass fraction is 12%, and the UV irradiation time is 10 min, the grafting rate of the flame retardant polyester is better, which is 5.08%. But the limiting oxygen index (LOI) decreases with the increase of grafting rate. The LOI of modified polyester fabric is 28% and the char residue increase when the number of assembled layers is 12. The vertical combustion test has no droplets, and the combustion performance of polyester fabrics are significantly improved.

Key words: UV light grafting, flame retardant polyester fabric, anti-droplet, flame retardant finishing, layer-by-layer self-assembly

CLC Number: 

  • TQ323.6

Fig.1

Mechanism of graft polymerization"

Fig.2

Curve of acrylic acid grafting rate with monomer mass fraction"

Fig.3

Curve of acrylic acid grafting rate with initiator mass fraction"

Fig.4

Curve of acrylic acid grafting rate with UV-light time"

Tab.1

Effect of grafting rate on LOI value"

KH-550质量分数/% SBE-β-CD质量分数/% 光照时间/min 样品接枝率/% LOI值/%
4 4 10 1.32 29
8 4 10 2.97 26
12 4 10 5.08 23
14 4 10 7.13 21
16 4 10 9.20 20

Fig.5

SEM images of pristine and modified flame retardant polyester fabric"

Fig.6

TG(a)and DTG(b)curves of pristine and modified flame retardant polyester fabric"

Tab.2

VCT and LOI results of pristine and modified flame retardant polyester fabric"

样品名称 续燃时间/s 阴燃时间/s 损毁长度/cm 熔滴数 是否点燃脱脂棉 LOI值/%
FRPET 0 0 9.6 4 35
g-FRPET 2 0 7.6 1 23
m-FRPET 0 1 8.0 0 28

Fig.7

Cone calorimetry curves of pristine and modified flame retardant polyester fabric. (a) Total heat release;(b) Heat release rate"

[1] 曾倩, 任元林. 纤维织物阻燃研究进展[J]. 纺织科学与工程学报, 2018,35(1):159-163.
ZENG Qian, REN Yuanlin. Research progress of fiber/fabric flame retardancy[J]. Journal of Textile Science and Engineering, 2018,35(1):159-163.
[2] 许虹, 计红梅, 张振雄, 等. 聚酯纤维阻燃改性进展[J]. 合成技术及应用, 2016,31(3):21-24.
XU Hong, JI Hongmei, ZHANG Zhenxiong, et al. Progress in flame retardant modification of polyester fiber[J]. Synthetic Technology & Application, 2016,31(3):21-24.
[3] 姬洪. 阻燃涤纶的制备、结构与性能研究[D]. 杭州:浙江理工大学, 2013:12-23.
JI Hong. Preparation, structure and properties of flame-retardant polyester fiber[D]. Hangzhou: Zhejiang Sci-Tech University, 2013:12-23.
[4] 魏丽菲, 朱志国, 靳昕怡, 等. 基于三(2-羟乙基)异氰尿酸酯的膨胀型阻燃剂对聚合物燃烧性能的影响[J]. 纺织学报, 2017,38(9):24-31.
WEI Lifei, ZHU Zhiguo, JIN Xinyi, et al. Influence of tris (2-hydroxyethyl) isocyanurate-based intumescent flame retardants on combustion performance of polymers[J]. Journal of Textile Research, 2017,38(9):24-31.
[5] 江振林. 聚酯纤维及织物的阻燃与抗熔滴改性[D]. 上海:东华大学, 2017:17-34.
JIANG Zhenlin. Flame retardant and anti-dropping modification of polyester fiber and fabric[D]. Shanghai: Donghua University, 2017:17-34.
[6] XU T, ZHANG L, ZHONG Y, et al. Fire retardancy and durability of poly (N-benzyloxycarbonyl-3, 4-dihydroxyphenylalanine) -montmorillonite composite film coated polyimide fabric[J]. Journal of Applied Polymer Science, 2013,131(1):1-15.
[7] 汤成, 李松, 颜红侠, 等. 纳米阻燃剂阻燃高分子材料的应用与研究进展[J]. 中国塑料, 2017,31(6):1-7.
TANG Cheng, LI Song, YAN Hongxia, et al. A review of applications and research progresses in flame-retardant polymeric nanocomposites[J]. China Plastics, 2017,31(6):1-7.
[8] 刘婷, 张安莹, 王锐, 等. 季戊四醇磷酸酯/二乙基次磷酸锌协同阻燃聚酰胺6的制备及其性能[J]. 纺织学报, 2018,39(9):8-14.
LIU Ting, ZHANG Anying, WANG Rui, et al. Preparation and performance of pentaerythritol phosphate/zinc diethyl phosphate synergistic flame retardant polyamide 6[J]. Journal of Textile Research, 2018,39(9):8-14.
[9] WANG P, CAI Z. Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism[J]. Polymer Degradation & Stability, 2017,137:138-150.
[10] 黄意龙, 龚静华, 杨曙光, 等. 磷系阻燃共聚酯的结构与性能[J]. 功能高分子学报, 2012,25(4):410-416.
HUANG Yilong, GONG Jinghua, YANG Shuguang, et al. Structure and properties of phosphorus flame retardant copolyester[J]. Journal of Functional Polymers, 2012,25(4):410-416.
[11] 马江涛, 周翔, 吴亚容, 等. 膨胀阻燃体系对涤纶织物的阻燃抗熔滴整理[J]. 印染, 2017,43(5):1-5.
MA Jiangtao, ZHOU Xiang, WU Yarong, et al. Flame retardant and anti-dripping finish of polyester fabrics with intumecent flame retardants[J]. China Dyeing & Finishing, 2017,43(5):1-5.
[12] CAROSIO F, DI Pierro, ALONGI J. Controlling the melt dripping of polyester fabrics by tuning the ionic strength of polyhedral oligomeric silsesquioxane and sodium montmorillonite coatings assembled through layer by layer[J]. Journal of Colloid and Interface Science, 2018,510:142-151.
doi: 10.1016/j.jcis.2017.09.059 pmid: 28942164
[13] 王玉忠, 陈力. 新型阻燃材料[J]. 新型工业化, 2016(1):42-65.
WANG Yuzhong, CHEN Li. New flame retardant materials[J]. The Journal of New Industrialization, 2016(1):42-65.
[14] XIAO Qing, QIU Zhiwei, LI Xiaohong. Flame retardant coatings prepared using layer by layer assembly:a review[J]. Chemical Engineering Journal, 2018,334:108-122.
[15] 潘颖. 层层自组装阻燃涂层的设计及其涤纶后整理的研究[D]. 合肥:中国科学技术大学, 2017: 97-133.
PAN Ying. Study on preparation and performance of flame retardant layer-by-layer self-assembled coating modified polyester fabric[D]. Hefei: University of Science and Technology of China, 2017: 97-133.
[16] 陈威. 涤棉混纺织物静电层层自组装法阻燃整理[D]. 苏州:苏州大学, 2017: 20-62.
CHEN Wei. Flame retardant of dopamine modified polyester/cotton blended fabric via electrostatic layer-by-layer self-assembly method[D]. Suzhou: Soochow University, 2017: 20-62.
[17] 朱伟敏, 刘金慧, 姚雄健. 聚酯纤维非织造布紫外光表面接枝改性研究[J]. 化学与粘合, 2003(3):113-115.
ZHU Weimin, LIU Jinghui, YAO Xiongjian. UV-photo initiated grafting treatment of PET non-woven[J]. Chemistry and Adhesion, 2003(3):113-115.
[18] 王灵杰. 聚丙烯腈纤维织物紫外光接枝阻燃改性及性能研究[D]. 天津:天津工业大学, 2016: 46-55.
WANG Lingjie. Study on flame retardant modification and properties of polyacrylonitrile fiber fabric by ultraviolet grafting[D]. Tianjin: Tianjin Polytechnic University, 2016: 46-55.
[19] 谷叶童. 基于紫外光接枝制备耐久阻燃聚丙烯腈织物[D]. 天津: 天津工业大学, 2018: 20-53.
GU Yetong. Fabrics of durable flame retardant polyacrylonitrile based on ultraviolet grafting[D]. Tianjin: Tianjin Polytechnic University, 2018: 20-53.
[20] 邓绮霞. 紫外辐照接枝聚丙烯的研究[D]. 北京:北京化工大学, 2016: 41-52.
DENG Qixia. Study on UV irradiation grafting polypropylene[D]. Beijing: Beijing University of Chemical Technology, 2016: 41-52.
[21] YASAMAN A, COSTAR T, SAWAS G, et al. Effects of processing variables on polypropylene degradation and long chain branching with UV irradiation[J]. Polymer Degradation and Stability, 2014,104(11):1-10.
[22] 张玥, 王志成, 张宇. 紫外辐照接枝甲基丙烯酸对无纺布性能影响的研究[J]. 化学与黏合, 2015,37(5):329-332,346.
ZHANG Yue, WANG Zhicheng, ZHANG Yu. The Effect of ultraviolet radiation grafting methacrylic acid on the properties of non-woven fabric[J]. Chemistry and Adhesion, 2015,37(5):329-332,346.
[23] TOMASZ M, MARCIN C, KRZYSZTOF P, et al. Studies on the thermal properties and flammability of polyamide 6 nanocomposites surface-modified via layer-by-layer deposition of chitosan and montmorillonite[J]. Journal of Thermal Analysis and Calorimetry, 2018,131:405-416.
doi: 10.1007/s10973-017-6849-4
[24] 冉国文, 许贺, 刘晓东, 等. KH550改性PEPA对PP/IFR体系阻燃、耐水和力学性能的影响[J]. 塑料工业, 2017,45(10):134-138,101.
RAN Guowen, XU He, LIU Xiaodong, et al. Improving the flame retardancy, water resistance and mechanical properties of PP/IFR composites by introducing KH550 modified PEPA[J]. China Plastics Industry, 2017,45(10):134-138,101.
[25] LI Z F, ZHANG C J, CUI L, et al. Fire retardant and thermal degradation properties of cotton fabrics based on APTES and sodium phytate through layer-by-layer assembly[J]. Journal of Analytical & Applied Pyrolysis, 2017,123:216-223.
[26] 韩鹏宇. 基于环糊精结构的膨胀型阻燃剂的合成及其在阻燃聚乳酸中的应用[D]. 杭州:浙江大学, 2017: 27-64.
HAN Pengyu. Synthesis of novel intumescent flame retardants based on β-cyclodextrin and their application in PLA[D]. Hangzhou: Zhejiang University, 2017: 27-64.
[27] ZHAO X, XIAO D, JUAN Picón Alonso, et al. Inclusion complex between beta-cyclodextrin and phenylphosphonicdiamide as novel bio-based flame retardant to epoxy: inclusion behavior, characterization and flammability[J]. Materials & Design, 2017,114:623-632.
[28] LIU L, PAN Y, WANG Z, et al. Layer-by-layer assembly of hypophosphorous acid-modified chitosan based coating for flame-retardant polyester-cotton blends[J]. Industrial & Engineering Chemistry Research, 2017,56(34):9429-9436.
[29] 李忠芳. 层层自组装阻燃棉织物的制备及性能[D]. 武汉:武汉纺织大学, 2017: 19-78.
LI Zhongfang. The preparation and properties of flame-retardant cotton fabric by layer-by-layer assembly[D]. Wuhan: Wuhan Textile University, 2017: 19-78.
[30] YAN H, ZHAO L, FANG Z, et al. Construction of multilayer coatings for flame retardancy of ramie fabric using layer-by-layer assembly[J]. Journal of Applied Polymer Science, 2017: 45556.
[31] ZHANG T, YAN H, PENG M, et al. Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate[J]. Nanoscale, 2013,5(7):3031-3012.
[32] YU X, PAN Y, WANG D, et al. Fabrication and properties of biobased layer-by-layer coated ramie fabric-reinforced unsaturated polyester resin composites[J]. Industrial & Engineering Chemistry Research, 2017,56(16):4758-4767.
[1] ZHOU Qingqing, CHEN Jiayi, QI Zhenming, CHEN Weijian, SHAO Jianzhong. Preparation and characterization of flame retardant and antibacterial cotton fabric [J]. Journal of Textile Research, 2020, 41(05): 112-120.
[2] XU Ailing, WANG Chunmei. Ammonium modification of phytic acid and flame retardant finishing of Lyocell fabric [J]. Journal of Textile Research, 2020, 41(02): 83-88.
[3] . Preparation and characterization of composite conductive cotton fabric based on carbon nanotube [J]. Journal of Textile Research, 2019, 40(04): 90-95.
[4] . Polysaccharide microcapsules via layer-by-layer assembly for cotton fabric as sustained release vessel#br# [J]. Journal of Textile Research, 2019, 40(02): 114-118.
[5] . Functional finishing of dopamine modified silk fabric with ferric chloride#br# [J]. Journal of Textile Research, 2019, 40(02): 130-134.
[6] . Application of TiO2-SnO2 composite sol for wool flame retardant finishing [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 95-100.
[7] . Influence of flame retardant finishing with silicon-phosphorus hybridization on the structure and thermal stability of wool fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 101-105.
[8] . Flame retardancy properties of dopamine modified polyester/cotton blended fabric treated by electrostatic layer-by-layer self-assembly [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 94-100.
[9] . Flame retardant finishing of acrylic fabric using nitrilase/zinc borate [J]. Journal of Textile Research, 2016, 37(3): 110-113.
[10] WEI Ju;LV Yanyan. Synthesis of novel phosphite flame retardant and its use for formaldehyde free durable finish [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(11): 95-98.
[11] LI Ya-bin;KOU Shi-jun. Effect of flame retardant finishing on properties of polylactic acid fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(4): 28-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!