Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 147-151.doi: 10.13475/j.fzxb.20181102605

• Apparel Engineering • Previous Articles     Next Articles

Evaluation on radiation thermal performance of honeycomb sandwich structure of thermal protective clothing fabrics

ZHANG Hongyue1, LI Xiaohui1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education,Donghua University, Shanghai 200051, China
  • Received:2018-11-09 Revised:2019-07-02 Online:2019-10-15 Published:2019-10-23
  • Contact: LI Xiaohui E-mail:lxh@dhu.ehu.cn

Abstract:

In order to solve the bulky and sultry problem of current thermal protective clothing, a honeycomb structure for the heat insulation layer was designed, and the radiation thermal performance of the overall thermal protective clothing fabric was evaluated. In the experiment, the typical current thermal protection fabric was selected, the outer material, honeycomb core thickness, side length, wall thickness and other influencing factors were taken into account comprehensively. The 32 kinds of experimental schemes were designed by orthogonal experiment method, the sample was prepared by laser cutting technology, and the radiant protective performace(RPP) value was evaluated by the radiation thermal protection performance tester. The results show that the honeycomb sandwich structure can significantly reduce the weight of the insulation layer. The outer fabric for PBI? matrix sample has better heat protective performance than Nomex? IIIA sample. At the same time, according to the range analysis, the main factors affecting the radiative heat performance of honeycomb sandwich structure are the thickness of honeycomb core, the second is the wall thickness, and the least is the side length. The larger the core thickness, the smaller the side length, the larger the wall thickness, and the better the radiative heat protection performance of honeycomb sandwich.

Key words: thermal protective clothing, honeycomb sandwich structure, radiation heat, core thickness

CLC Number: 

  • TS941.73

Tab.1

Fabric parameters of each layer"

试样
编号
试样名称 颜色 面密度/
(g·m-2)
厚度/
mm
透气率/
(L·m-2·s-1)
A1 PBI?matrix 金黄 205.2 0.32 132.70
A2 Nomex?IIIA 藏青 211.6 0.40 206.57
B I-70/PTFE 白色+浅黄 106.1 0.43 0.84
C1 Nomex? 浅黄 128.4 1.04 1 087.65
C2 Nomex? 浅黄 151.3 1.43 988.50
C3 Nomex? 浅黄 229.0 2.04 707.63
C4 Nomex? 浅黄 317.2 2.84 566.58
D 阻燃粘胶 蓝灰 125.6 0.27 1 262.45

Tab.2

Three-factor mixed horizontal orthogonal table"

试验编号 峰窝孔型编号 芯厚h/mm 边长l/mm 壁厚t/mm
1 E1 1.04 2 2.6
2 E2 1.04 4 5.2
3 E3 1.04 6 7.8
4 E5 1.43 2 5.2
5 E6 1.43 4 2.6
6 E7 1.43 8 7.8
7 E9 2.04 2 7.8
8 E10 2.06 4 2.6
9 E11 2.04 8 5.2
10 E13 2.84 4 7.8
11 E14 2.84 6 5.2
12 E15 2.84 9 2.6

Fig.1

Schematic diagram of honeycomb pass scheme"

Tab.3

Experimental scheme design"

蜂窝孔型
结构编号
芯厚
h/mm
蜂窝边长
l/mm
蜂窝壁厚
t/mm
空心率/
%
E1 1.04 2 2.6 32.63
E2 1.04 4 5.2 32.63
E3 1.04 6 7.8 32.63
E4 1.04 - - 0
E5 1.43 2 5.2 15.99
E6 1.43 4 2.6 52.87
E7 1.43 8 7.8 40.94
E8 1.43 - - 0
E9 2.04 2 7.8 9.46
E10 2.04 6 2.6 63.98
E11 2.04 8 5.2 52.87
E12 2.04 - - 0
E13 2.84 4 7.8 22.13
E14 2.84 6 5.2 44.42
E15 2.84 8 2.6 70.90
E16 2.84 - - 0

Fig.2

RPP value of honeycomb sandwich structure with different outer layer"

[1] 林建波, 殷海波, 曹永强. 消防员隔热防护服的抗辐射热渗透性能[J]. 消防科学与技术, 2015,34(2):241-243.
LIN Jianbo, YIN haibo, CAO Yongqiang. Anti-radiation heat penetration performance of firefighter's heat insulation protective clothing[J]. Fire Science and Technology, 2015,34(2):241-243.
[2] NAEEM J, MAZARI A A, HAVELKA A. Review: Radiation heat transfer through fire fighter protective clothing[J]. Fibres and Textiles in Eastern Europe, 2017,25(4):65-74.
[3] 赵晓明, 刘国熠. 消防避火服用复合织物热防护效能优化研究[J]. 材料导报, 2017,31(1):77-83.
ZHAO Xiaoming, LIU Guoyi. Research on optimization of thermal protection efficiency of composite fabric for fire protection and fire avoidance[J]. Materials Reports, 2017,31(1):77-83.
[4] 赵石楠. 气凝胶型隔热层消防服概念研究[J]. 中国个体防护装备, 2017(3):17-20.
ZHAO Shinan. Research on the concept of aerogel heat insulation layer fire fighting suit[J]. China Personal Protective Equipment, 2017(3):17-20.
[5] SHAID A, WANG L J, PADHYE R. The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment[J]. Journal of Industrial Textiles, 2016,45(4):611-625.
doi: 10.1177/1528083715610296
[6] 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132.
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials in fire fighting clothing[J]. Journal of Textile Research, 2014,35(8):124-132.
doi: 10.1177/004051756503500205
[7] PHELPS H, SIDHU H. A mathematical model for heat transfer in fire fighting suits containing phase change materials[J]. Fire Safety Journal, 2015,74:43-47.
doi: 10.1016/j.firesaf.2015.04.007
[8] 王帅, 卢业虎, 王丽君, 等. 热灾害环境对形状记忆消防服面料防护性能的影响[J]. 东华大学学报(自然科学版), 2018,44(1):74-79,99.
WANG Shuai, LU Yehu, WANG Lijun, et al. Influence of thermal disaster environment on the protective performance of shape memory fire protective clothing fabric[J]. Journal of Donghua University(Natural Science Edition), 2018,44(1):74-79,99.
[9] 楼利琴, 傅雅琴. 蜂窝组织棉织物增强聚氨酯复合材料的力学性能[J]. 纺织学报, 2014,35(9):62-66.
LOU Liqin, FU Yaqin. Mechanical properties of honeycomb cotton fabric reinforced polyurethane composites[J]. Journal of Textile Research, 2014,35(9):62-66.
[10] 吴一昊, 王天舒. 考虑辐射效应金属蜂窝夹芯板传热性能的数值模拟分析[J]. 材料导报, 2016,30(S1):164-167.
WU Yihao, WANG Tianshu. Numerical simulation analysis of heat transfer performance of metal honeycomb sandwich plate considering radiation effect[J]. Materials Reports, 2016,30(S1):164-167.
[11] 樊卓志, 孙勇, 段永华, 等. 金属蜂窝板参数对其传热性能的影响[J]. 材料导报, 2013,27(8):147-151.
FAN Zhuozhi, SUN Yong, DUAN Yonghua, et al. Influence of metal honeycomb plate parameters on its heat transfer performance[J]. Materials Reports, 2013,27(8):147-151.
[12] 翟胜男, 陈太球, 蒋春燕, 等. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018,39(8):100-104.
ZHAI Shengnan, CHEN Taiqiu, JIANG Chunyan, et al. Comprehensive evaluation of thermal protection and comfort of outer fabric of fire protective clothing[J]. Journal of Textile Research, 2018,39(8):100-104.
[1] ZHAI Li′na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[2] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[3] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[4] CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric [J]. Journal of Textile Research, 2019, 40(10): 141-146.
[5] DU Feifei, LI Xiaohui, ZHANG Siyan. Evaluation of thermal protection performance of honeycomb sandwich structure fabric for fireproof clothing [J]. Journal of Textile Research, 2019, 40(03): 133-138.
[6] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[7] . Comparative of heat insulation performance between commonly used high-temperature and low-temperature protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(10): 121-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!