Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 64-68.doi: 10.13475/j.fzxb.20181102906

• Textile Engineering • Previous Articles     Next Articles

Shape analysis of biaxial stretching coil of weft plain knitted cotton fabric

WEI Tengxiang1,2, LI Min1,2, PENG Hongyun1,2, FU Shaohai1,2()   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2018-11-12 Revised:2019-05-10 Online:2019-11-15 Published:2019-11-26
  • Contact: FU Shaohai E-mail:shaohaifu@hotmail.com

Abstract:

In view of the problem that the coil is deformed easily in the process of smooth mercerization, the weft plain knitted cotton fabric before mercerizing was stretched bilaterally, the shape changes of coils under different tensile conditions were studied. The fabric was divided into different units by a grid method, and the change rule of the displacement vector, coil spacing, coil height, shape coefficient and shear angle of different elements under biaxial stretching were studied. The results show that the less deformed region of fabric is elliptical, and with the tensile tension increases, ellipse area reduces, and the coil spacing and the coil height obey the trend of the parabola; the coil shape coefficient has a periodic gradient distribution, the maximum shear angle of the fabric decreases, and all the shear angles decrease slowly.

Key words: weft plain knitted cotton fabric, grid method, biaxial stretching, coil shape, structural parameter

CLC Number: 

  • TS181

Fig.1

Experimental mercerizing device"

Fig.2

Diagram of shear angle. (a) Before stretching; (b) After stretching"

Fig.3

Nodal vector field (a) and displacement field (b) of fabric at different tension conditions"

Fig.4

Coil spacing and height in horizontal and vertical direction of unit on center line. (a) Horizontal coil spaing; (b) Horizontal coil height; (c) Vertical coil spacing; (d) Vertical coil height"

Tab.1

Fitting equation of coil spacing and coil height"

织物单元 扩幅/% 方程 R2
横向圈距 5 Y=7.352 32-0.048 09X+0.002 29X2 0.992 84
10 Y=7.610 91-0.068 16X+0.003 25X2 0.959 65
15 Y=8.020 49-0.083 59X+0.003 98X2 0.988 68
横向圈高 5 Y=7.250 81-0.011 67X+0.000 555 9X2 0.980 95
10 Y=7.416 49-0.018 13X+0.000 863 5X2 0.990 77
15 Y=7.967 09-0.019 11X+0.000 910 2X2 0.950 47
纵向圈距 5 Y=7.164 67-0.014 09X+0.000 670 9X2 0.983 38
10 Y=7.411 58-0.027 7X+0.001 32X2 0.991 03
15 Y=7.721 89-0.022 61X+0.001 08X2 0.987 34
纵向圈高 5 Y=7.380 11-0.037 39X+0.001 78X2 0.992 84
10 Y=7.609 68-0.056 91X+0.002 71X2 0.959 65
15 Y=8.082 25-0.039 07X+0.001 86X2 0.988 68

Fig.5

Shape coefficient of each unit on center line in horizontal (a) and vertical (b) direction"

Fig.6

Shape coefficient of all units in fabric with different tension conditions"

Fig.7

Shear angle of all units in fabric with different tension conditions"

[1] MOGHASSEM A R, BAKHSHI M R. Dimensional stabilization of cotton plain weft knitted fabric using mercerization treatment[J]. Fibers and Polymers, 2009,10(6):847-854.
doi: 10.1007/s12221-009-0847-5
[2] KIM J T, NETRAVALI A N. Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites[J]. Composites Part A: Applied Science & Manufacturing, 2010,41(9):1245-1252.
[3] LI X K, BAI S L. Sheet forming of the multi-layered biaxial weft knitted fabric reinforcement: part I: on hemispherical surfaces[J]. Composites Part A: Applied Science & Manufacturing, 2009,40(6):766-777.
[4] 张一平, 龙海如. 纬编针织物双向拉伸性能测试与分析[J]. 纺织学报, 2011,32(11):37-41.
ZHANG Yiping, LONG Hairu. Testing and analysis of bidirectional tensile properties of weft knitted fabrics[J]. Journal of Textile Research, 2011,32(11):37-41.
[5] PEIRCE F T. Geometrical principles applicable to the design of functional fabrics[J]. General Information, 1947,17(3):123-147.
[6] MUNDEN D L. The geometry and dimensional properties of plain-knit fabrics[J]. Journal of The Textile Institute, 1959,50(7):448-471.
[7] MOZAFARY V, PAYVANDY P. A novel method based on loop shape for simulating knitted fabric using mass spring model[J]. Fibers & Polymers, 2017,18(3):533-541.
[8] DUHOVIC M, BHATTACHARYYA D. Simulating the deformation mechanisms of knitted fabric composites[J]. Composites Part A: Applied Science & Manufacturing, 2006,37(11):1897-1915.
[9] DUSSERRE G, BALEA L, BERNHART G. Elastic properties prediction of a knitted composite with inlaid yarns subjected to stretching: a coupled semi-analytical model[J]. Composites Part A: Applied Science and Manufacturing, 2014,64(64):185-193.
doi: 10.1016/j.compositesa.2014.05.007
[10] ARAÚJO M D, FANGUEIRO R, HONG H. Modelling and simulation of the mechanical behavior of weft-knitted fabrics for technical applications: part II: 3D model based on the elastica theory[J]. Autex Research Journal, 2003,3(4):166-172.
[11] LIU D, CHRISTE D, SHAKIBAJAHROMI B, et al. On the role of material architecture in the mechanical behavior of knitted textiles[J]. International Journal of Solids & Structures, 2017,109:101-111.
[12] CHOI K F, LO T Y. The shape and dimensions of plain knitted fabric: a fabric mechanical model[J]. Textile Research Journal, 2006,76(10):777-786.
doi: 10.1177/0040517507069030
[13] LUO Y, VERPOEST I. Biaxial tension and ultimate deformation of knitted fabric reinforcements[J]. Composites Part A: Applied Science & Manufacturing, 2002,33(2):197-203.
[14] 王戎戎. 针织物的变形与服用性能的研究[D]. 上海:东华大学, 2001:1-36.
WANG Rongrong. Study on the deformation and performance of knitted fabric[D]. Shanghai: Donghua University, 2001:1-36.
[1] WEI Tengxiang, LI Min, PENG Hongyun, FU Shaohai. Relationship between open-width mercerization condition and loop structure of weft plain-knitted cotton fabrics [J]. Journal of Textile Research, 2020, 41(04): 98-105.
[2] . Relationship between structure parameters and wrinkle resistance of worsted fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 37-41.
[3] . Parameter values and regularity of culottes structure [J]. Journal of Textile Research, 2015, 36(04): 120-123.
[4] Qian Youqing;ZHAO Juan;ZUO Baoqi. Theoretical analysis of slipping property of plain silk fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(5): 38-43.
[5] WU Weiwei;ZHANG Yang;ZHU Hongxiao. Relationship between worsted fabric formability and structural parameters of weft yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(11): 49-53.
[6] ZHONG Cenran;JIN Chunkui. Analysis of cross section structural parameter of blended yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(1): 40-43.
[7] YANG Caiyun. Design method related to 2.5-D preform structural parameters [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 54-57.
[8] YAO Yuefei;GAO Lei;YANG Qiongli;YU Laiming;LUO Yongbo;FU Yaqin;LIU Guanfeng. Effect of glass fabric structural parameters on its acoustic insulation property [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(02): 52-55.
[9] DUAN Yafeng;PAN Kui;YE Haina;WU Huiying. Influence of structural parameters of polyester fabric on its anti-ultraviolet properties [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(11): 52-56.
[10] CHEN Mingyan. Structural parameter adjustment of trousers in ration design [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(8): 82-86.
[11] ZHANG Xiaoli;HUANG Chen;CHEN Jianglin. Grey correlation analysis of physical properties of suede fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(12): 45-47.
[12] JIANG Wei-qing. Relationship between the comprehensive wearing characteristics and the structure parameters of lightweight worsted fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(11): 86-89.
[13] XING Ming-jie;YU Chong-wen;TANG Dian-hua;LIU Zheng-qin. Study on the second nozzle structural parameters of air-jet spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(6): 30-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!