Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 141-146.doi: 10.13475/j.fzxb.20181103106

• Apparel Engineering • Previous Articles     Next Articles

Influence of air gap size on steam protective performance of fireproof fabric

CHEN Si1, LU Yehu1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215123, China
  • Received:2018-11-12 Revised:2019-07-04 Online:2019-10-15 Published:2019-10-23
  • Contact: LU Yehu E-mail:yhlu@suda.edu.cn

Abstract:

In order to investigate the influence of air gap between fabric layers and human skin on protective performance of protective clothing against steam, three different fabric systems were selected and four levels of air gap, i.e., 0 mm, 6 mm, 12 mm, and 18 mm, were designed. Time to 2nd and 3rd burn degree, total absorbed energy and heat flux were recorded and analyzed to evaluate the impact of air gap on the protective performance. The results show that thermal protection is different for different fabric assemblies. If the fabric thickness is bigger and moisture barrier is arranged more close to the steam hazard, the fabric system provides higher thermal protection. Further, a significant relationship exists between the thermal protection against steam and air gap size. If the air gap size is higher than 12 mm, thermal protective performance against steam exhibits a significant increase. The analysis of heat flux curve during exposure and cooling phase can facilitate the further understanding of the heat and moisture transfer mechanism.

Key words: thermal protective clothing, air gap, steam hazard, protective performance, total absorbed energy

CLC Number: 

  • TS941.73

Tab.1

Properties of single-layer fabric"

面料编号 织物类型 纤维成分 组织结构 厚度/mm 面密度/
(g·m-2)
透气性/
(cm3·cm-2·s-1)
OS 外层 芳纶1313/芳纶1414(98/2) 斜纹 0.41 186.7 17.1
MB 防水膜 芳纶1313和聚四氟乙烯膜 水刺毡 0.69 106.7 0
CF 复合面料 芳纶1313/芳纶1414(98/2)和聚四氟乙烯膜 涂层 0.63 280.0 0
TL 隔热层 芳纶1313毡和基布 三维间隔 2.73 180.0 662.0

Tab.2

Properties of fabric systems"

系统编号 系统组合 厚度/mm 面密度/(g·m-2)
S CF 0.63 280.0
D1 CF+TL 3.36 460.0
D2 OS+MB 1.13 293.3

Fig.1

Steam test apparatus"

Tab.3

Thermal protection of fabric system with different air gap sizes"

面料
系统
二级烧
伤时
间/s
方差/
s
三级烧
伤时
间/s
方差/
s
总吸收
能量/
(kJ·m-2)
能量
方差/
(kJ·m-2)
S 0.43 5.04 0.49 6.92 382.33 0.91
S+6 mm 0.26 5.50 0.22 7.56 356.40 9.33
S+12 mm 0.09 6.34 0.07 8.39 277.73 9.71
S+18 mm NB NB 146.65 0.07
显著性 ** ** **
D1 1.19 18.68 NB 202.73 4.66
D1+6 mm 0.60 19.30 NB 192.95 1.91
D1+12 mm 0.94 20.95 NB 180.17 2.70
D1+18 mm NB NB 111.10 2.18
显著性 ** NS **
D2 0.16 4.96 0.52 6.97 417.93 12.53
D2+6 mm 0.50 5.84 0.72 8.26 391.87 10.41
D2+12 mm 0.45 9.50 0.80 12.50 317.20 12.41
D2+18 mm 0.25 14.71 0.99 20.78 225.13 14.69
显著性 ** ** **

Fig.2

Effect of air gap thickness on 2nd degree burn time of fabric"

Fig.3

Effect of air gap thickness on total absorbed energy of fabric"

Fig.4

Heat flux profile of fabric system S with different air gap thickness"

Fig.5

Heat flux profile of fabric system D1 with different air gap thickness"

Fig.6

Heat flux profile of fabric system D2 with different air gap thickness"

[1] MURTAZA G. Development of fabrics for steam and hot water protection[D]. Edmonton: University of Alberta, 2012: 2-6.
[2] MANDELCORN E, GOMEZ M, CARTOTTO R C. Work-related burn injuries in Ontario, Canada: has anything changed in the last 10 years?[J]. Burns, 2003,29(5):469-472.
doi: 10.1016/s0305-4179(03)00063-9 pmid: 12880727
[3] 刘洪凤, 张富丽. 蒸汽防护服装的性能要求及研究现状[J]. 上海纺织科技, 2012,40(5):14-16.
LIU Hongfeng, ZHANG Fuli. Performance requirements and its present research status of steam exposure suit[J]. Shanghai Textile Science & Technology, 2012,40(5):14-16.
[4] 陈思, 卢业虎, 戴晓群, 等. 高温液体及蒸汽防护服装防护性能研究进展[J]. 纺织学报, 2018,39(5):144-149.
CHEN Si, LU Yehu, DAI Xiaoqun, et al. Research progress of protection properties of protective clothing against steam and hot liquid spray[J]. Journal of Textile Research, 2018,39(5):144-149.
[5] DESRUELLE A V, SCHMID B, MONTMAYEUR A. Thermal protection against hot steam stress[J]. Blowing Hot and Cold: Protecting Against Climatic Extremes, 2002,109(5):1147-1156
[6] ACKERMAN M Y, CROWN E M, DALE J D, et al. Development of a test apparatus/method and material specifications for protection from steam under pressure[C] //SHEPHERD A. Performance of Protective Clothing and Equipment: 9th Volume, Emerging Issues and Technologies. California: ASTM, 2012: 303-328.
[7] SU Y, LI J. Analyzing steam transfer though various flame-retardant fabric assemblies in radiant heat exposure[J]. Journal of Industrial Textiles, 2016. doi: 10.1177/1528083716674907.
[8] MANDAL S. Characterization of textile fabrics under various thermal exposure[J]. Textile Research Journal, 2013,83(10):1005-1019.
doi: 10.1177/0040517512461707
[9] ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety and Ergonomics, 2004,10(3):239-245.
pmid: 15377408
[10] SATI R, CROWN E M, ACKERMAN M, et al. Protection from steam at high pressures: development of a test device and protocol[J]. International Journal of Occupational Safety and Ergonomics, 2008,14(1):29-41.
doi: 10.1080/10803548.2008.11076748 pmid: 18394324
[11] DESRUELLE A, SCHMID B. The steam laboratory of the Institut de medecine navale du service de sante des arme es: a set of tools in the service of the French Navy[J]. European Journal of Applied Physiology, 2004,92(6):630-635.
doi: 10.1007/s00421-004-1123-4 pmid: 15205957
[12] 刘洪凤, 张富丽. 芳砜纶复合材料的蒸汽防护性能研究[J]. 上海纺织科技, 2012,40(12):29-31.
LIU Hongfeng, ZHANG Fuli. Steam protective property of PSA composites[J]. Shanghai Textile Science & Technology, 2012,40(12):29-31.
[13] 刘洪凤, 张富丽. 法国海军医学院的蒸汽防护实验室[J]. 中国个体防护装备, 2013(2):43-45.
LIU Hongfeng, ZHANG Fuli. The steam laboratory of the IMNSSA of the french navy[J]. China Personal Protective Equipment, 2013(2):43-45.
[14] SU Y, LI J, WANG Y. Effect of air gap thickness on thermal protection of firefighter's protective clothing against hot steam and thermal radiation[J]. Fiber and Polymers, 2017,18(3):582-589.
doi: 10.1007/s12221-017-6714-x
[1] ZHAI Li′na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[2] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[3] WANG Yaxian, LI Yanmei. Research progress in impact-energy-absorbing cushioning garments [J]. Journal of Textile Research, 2020, 41(05): 184-190.
[4] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[5] XIAO Ping, ZHANG Zhaohua, ZHOU Ying, LIU Jiakai, TANG Haoyuan. Influence of arm angular motion on clothing local thermal insulation [J]. Journal of Textile Research, 2020, 41(02): 109-114.
[6] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[7] QIU Hao, SU Yun, WANG Yunyi. Influence of steam exposure condition on thermal protective performance of fabrics [J]. Journal of Textile Research, 2020, 41(01): 118-123.
[8] HU Ziting, ZHENG Xiaohui, FENG Mingming, WANG Yingjian, LIU Li, DING Songtao. Influence of air gap on thermal and moisture properties of permeable protective clothing [J]. Journal of Textile Research, 2019, 40(11): 145-150.
[9] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[10] ZHANG Hongyue, LI Xiaohui. Evaluation on radiation thermal performance of honeycomb sandwich structure of thermal protective clothing fabrics [J]. Journal of Textile Research, 2019, 40(10): 147-151.
[11] LIU Qixia, ZHOU Yiru, YANG Zhilian, WANG Mei, JI Tao. Preparation and properties of spherical activated carbon-based composite fabric for permeable chemical protective clothing [J]. Journal of Textile Research, 2019, 40(06): 182-188.
[12] SU Yun, YANG Jie, LI Rui, SONG Guowen, LI Jun, ZHANG Xianghui. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation [J]. Journal of Textile Research, 2019, 40(02): 147-152.
[13] WANG Min, LI Jun. Three-dimensional on-site scanning measurement and characterization of air gap entrapped between flame manikin and clothing [J]. Journal of Textile Research, 2019, 40(01): 114-119.
[14] . Influence of clothing styles on local thermal transfer performance [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 92-96.
[15] . Application of shape memory material in functional and protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 170-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!