Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 140-144.doi: 10.13475/j.fzxb.20181103505
• Apparel Engineering • Previous Articles Next Articles
HU Beibei1, DU Feifei1, LI Xiaohui1,2()
CLC Number:
[1] | 牛丽, 钱晓明, 范金土, 等. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018,39(6):106-112. |
NIU Li, QIAN Xiaoming, FAN Jintu, et al. Design of cooling firefighting protective clothing and evaluation on cooling performance[J]. Journal of Textile Research, 2018,39(6):106-112. | |
[2] |
FLOURIS A D, CHEUNG S S. Design and control optimization of microclimate liquid cooling systems underneath protective clothing[J]. Ann Biomed Eng, 2006,34(3):359-372.
doi: 10.1007/s10439-005-9061-9 pmid: 16463083 |
[3] | 王云仪, 赵蒙蒙. 高温强辐射下相变降温背心的热调节作用客观测评[J]. 纺织学报, 2012,33(5):101-105. |
WANG Yunyi, ZHAO Mengmeng. Objective evaluation on thermal adjusting effect of PCM cooling vest under high temperature and strong radiation[J]. Journal of Textile Research, 2012,33(5):101-105. | |
[4] | 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132. |
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials in fire-fighting suit[J]. Journal of Textile Research, 2014,35(8):124-132. | |
[5] | 冯晶晶, 赵晓明, 郑振荣. SiO2气凝胶在热防护纺织品中的应用[J]. 纺织科学与工程学报, 2018,35(2):113-117. |
FENG Jingjing, ZHAO Xiaoming, ZHENG Zhenrong, Application of SiO2 aerogel in thermal protective textiles[J]. Journal of Textile Science and Engineering, 2018,35(2):113-117. | |
[6] | 赵石楠. 气凝胶型隔热层消防服概念及应用的可行性研究[J]. 消防技术与产品信息, 2018,31(1):67-69. |
ZHAO Shinan. Feasibility study on the concept and application of aerogel insulation layer for firefighter protective clothing[J]. Fire Technique and Products Information, 2018,31(1):67-69. | |
[7] | LU J, HONG K, YOON K. Effect of aerogel on thermal protective performance of fire-fighter clothing[J]. Journal of Fiber Bioengineering and Informatics, 2013(9):315-324. |
[8] | 苗勇, 李俊. 减少热蓄积的消防服开发及其性能评价[J]. 纺织学报, 2016,37(1):111-115. |
MIAO Yong, LI Jun. Development and evaluation of firefighter's clothing capable of enhancing heat dissipation[J]. Journal of Textile Research, 2016,37(1):111-115. | |
[9] |
MCQUERRY M, DENHARTOG E, BARKER R. Garment ventilation strategies for improving heat loss in structural firefighter clothing ensembles[J]. AATCC Journal of Research, 2016,3(3):9-14.
doi: 10.14504/ajr.3.3.2 |
[10] |
MCQUERRY M, BARKER R, DENHARTOG E. Relationship between novel design modifications and heat stress relief in structural firefighters' protective clothing[J]. Applied Ergonomics, 2018,70:260-268.
pmid: 29866318 |
[11] | DAFANG W, LIMING Z, BING P, et al. Thermal protection performance of metallic honeycomb core panel structures in non-steady thermal environments[J]. Experimental Heat Transfer, 2016,29(1):53-77. |
[12] | 王浩. 气动加热条件下金属蜂窝结构传热特性研究[D]. 哈尔滨工业大学, 2014:1-3. |
WANG Hao. Study on thermal properties of metallic honey-comb constructure on aerodynamic heating condition[D]. Harbin: Harbin Institute of Technology, 2014:1-3. | |
[13] | 樊卓志, 孙勇, 段永华, 等. 金属蜂窝板参数对其传热性能的影响[J]. 材料导报, 2013,27(8):147-151. |
FAN Zhuozhi, SUN Yong, DUAN Yonghua, et al. Influence of metallic honeycomb parameters on its heat transmission performance[J]. Materials Review, 2013,27(8):147-151. | |
[14] | 徐海建. 消防服蜂窝结构热防护性能的基础实验研究[D]. 上海:东华大学, 2017:25-36. |
XU Haijian. Basic experimental research on thermal protective performance of honeycomb structure for firefighter protective clothing[D]. Shanghai: Donghua University, 2017:25-36. |
|