Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 140-144.doi: 10.13475/j.fzxb.20181103505

• Apparel Engineering • Previous Articles     Next Articles

Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing

HU Beibei1, DU Feifei1, LI Xiaohui1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2018-11-13 Revised:2019-07-02 Online:2019-11-15 Published:2019-11-26
  • Contact: LI Xiaohui E-mail:lxh@dhu.ehu.cn

Abstract:

In order to improve the thermal protective performance of honeycomb fabric for firefighter protective clothing, the honeycomb hole structure optimization and evaluation were carried out for the thermal barrier. The current typical fabrics of firefighter protective clothing were chosen as the experimental samples. Considering thermal liner layering, honeycomb side length and wall thickness, six kinds of hole sizes were designed for the straight holes and the inclined holes respectively, and a solid control group was presented. Then 13 sets of experimental schemes were prepared by laser cutting technology and a thermal protective performance tester was adopted to perform the flash fire test. The experimental results show that honeycomb layering reorganization effectively improves the thermal protective performance of honeycomb fabric systems for firefighter protective clothing. By the non-parametric correlation sample test, a significant difference exists in the thermal protective performance of the honeycomb sandwich structure with different opening methods, and the inclined hole structure has better thermal protective performance than the straight hole.

Key words: firefighter protective clothing, honeycomb fabric, thermal protective performance, structure optimization, comfort performance

CLC Number: 

  • TS941.73

Tab.1

Fabric sample of each layer and its fundamental characteristic"

功能层 织物种类 织物成分 面密度/(g·m-2) 厚度/mm 透气率/(L·m-2·s-1)
外层 Nomex?
IIIA
93%Nomex,
5%Kevlar,
2%ASTF
211.6 0.50 206.57
防水透
气层
I-70/
PTFE
80%Nomex,
20%Kevlar
(PTFE)
106.1 0.66 0.84
隔热层 I-120毡
Nomex?
80%Nomex,
20%Kevlar
128.4 1.05 1 087.65
舒适层 阻燃粘胶 50%Nomex,
50%Lenzing FR
125.6 0.36 1 262.45

Fig.1

Plan sketch of honeycomb hole structure"

Tab.2

Dimension scheme of honeycomb size"

孔型尺寸方案编号 边长/mm 壁厚/mm 质量减少率/%
C1 实心 实心 0
C2 1 5.2 6.24
C3 1 7.8 3.30
C4 2 5.2 15.99
C5 2 7.8 9.46
C6 3 5.2 24.98
C7 3 7.8 15.99

Fig.2

Diagram of honeycomb hole structure for thermal barrier. (a) E (straight hole); (b) S (oblique hole)"

Tab.3

Experimental scheme"

实验方案 边长/mm 壁厚/mm 尺寸方案 开孔方式 透气率/(L·m-2·s-1)
1# 实心 实心 C1 297.15
2# 1 5.2 C2 E(直孔) 785.76
3# 1 7.8 C3 E(直孔) 582.40
4# 2 5.2 C4 E(直孔) 1 911.04
5# 2 7.8 C5 E(直孔) 1 112.81
6# 3 5.2 C6 E(直孔) 2 588.19
7# 3 7.8 C7 E(直孔) 1 488.05
8# 1 5.2 C2 S(斜孔) 709.33
9# 1 7.8 C3 S(斜孔) 532.54
10# 2 5.2 C4 S(斜孔) 1 162.33
11# 2 7.8 C5 S(斜孔) 764.91
12# 3 5.2 C6 S(斜孔) 1 362.95
13# 3 7.8 C7 S(斜孔) 965.02

Fig.3

Diagram of infrared thermal imager inspection. (a) Solid fabric system; (b) Honeycomb oblique hole fabric system"

Fig.4

TPP value of fabric system"

[1] 牛丽, 钱晓明, 范金土, 等. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018,39(6):106-112.
NIU Li, QIAN Xiaoming, FAN Jintu, et al. Design of cooling firefighting protective clothing and evaluation on cooling performance[J]. Journal of Textile Research, 2018,39(6):106-112.
[2] FLOURIS A D, CHEUNG S S. Design and control optimization of microclimate liquid cooling systems underneath protective clothing[J]. Ann Biomed Eng, 2006,34(3):359-372.
doi: 10.1007/s10439-005-9061-9 pmid: 16463083
[3] 王云仪, 赵蒙蒙. 高温强辐射下相变降温背心的热调节作用客观测评[J]. 纺织学报, 2012,33(5):101-105.
WANG Yunyi, ZHAO Mengmeng. Objective evaluation on thermal adjusting effect of PCM cooling vest under high temperature and strong radiation[J]. Journal of Textile Research, 2012,33(5):101-105.
[4] 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132.
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials in fire-fighting suit[J]. Journal of Textile Research, 2014,35(8):124-132.
[5] 冯晶晶, 赵晓明, 郑振荣. SiO2气凝胶在热防护纺织品中的应用[J]. 纺织科学与工程学报, 2018,35(2):113-117.
FENG Jingjing, ZHAO Xiaoming, ZHENG Zhenrong, Application of SiO2 aerogel in thermal protective textiles[J]. Journal of Textile Science and Engineering, 2018,35(2):113-117.
[6] 赵石楠. 气凝胶型隔热层消防服概念及应用的可行性研究[J]. 消防技术与产品信息, 2018,31(1):67-69.
ZHAO Shinan. Feasibility study on the concept and application of aerogel insulation layer for firefighter protective clothing[J]. Fire Technique and Products Information, 2018,31(1):67-69.
[7] LU J, HONG K, YOON K. Effect of aerogel on thermal protective performance of fire-fighter clothing[J]. Journal of Fiber Bioengineering and Informatics, 2013(9):315-324.
[8] 苗勇, 李俊. 减少热蓄积的消防服开发及其性能评价[J]. 纺织学报, 2016,37(1):111-115.
MIAO Yong, LI Jun. Development and evaluation of firefighter's clothing capable of enhancing heat dissipation[J]. Journal of Textile Research, 2016,37(1):111-115.
[9] MCQUERRY M, DENHARTOG E, BARKER R. Garment ventilation strategies for improving heat loss in structural firefighter clothing ensembles[J]. AATCC Journal of Research, 2016,3(3):9-14.
doi: 10.14504/ajr.3.3.2
[10] MCQUERRY M, BARKER R, DENHARTOG E. Relationship between novel design modifications and heat stress relief in structural firefighters' protective clothing[J]. Applied Ergonomics, 2018,70:260-268.
pmid: 29866318
[11] DAFANG W, LIMING Z, BING P, et al. Thermal protection performance of metallic honeycomb core panel structures in non-steady thermal environments[J]. Experimental Heat Transfer, 2016,29(1):53-77.
[12] 王浩. 气动加热条件下金属蜂窝结构传热特性研究[D]. 哈尔滨工业大学, 2014:1-3.
WANG Hao. Study on thermal properties of metallic honey-comb constructure on aerodynamic heating condition[D]. Harbin: Harbin Institute of Technology, 2014:1-3.
[13] 樊卓志, 孙勇, 段永华, 等. 金属蜂窝板参数对其传热性能的影响[J]. 材料导报, 2013,27(8):147-151.
FAN Zhuozhi, SUN Yong, DUAN Yonghua, et al. Influence of metallic honeycomb parameters on its heat transmission performance[J]. Materials Review, 2013,27(8):147-151.
[14] 徐海建. 消防服蜂窝结构热防护性能的基础实验研究[D]. 上海:东华大学, 2017:25-36.
XU Haijian. Basic experimental research on thermal protective performance of honeycomb structure for firefighter protective clothing[D]. Shanghai: Donghua University, 2017:25-36.
[1] ZHAI Li′na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[2] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[3] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[4] QIU Hao, SU Yun, WANG Yunyi. Influence of steam exposure condition on thermal protective performance of fabrics [J]. Journal of Textile Research, 2020, 41(01): 118-123.
[5] ZHANG Haitang, WANG Hongfu, KE Ying. Current situation and trend of protective clothing for emergency rescue [J]. Journal of Textile Research, 2019, 40(01): 175-181.
[6] . Comprehensive evaluation of thermal protection and comfort of outer fabrics of firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 100-104.
[7] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[8] . Analysis of evaluation method of thermal protective performance of firefighter protective clothing exposure to low level radiation [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 162-168.
[9] . Research progress on air gap entrapped in firefighters' protective clothing and its measurement methods [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 151-156.
[10] . Influence of waterproof permeable layer on thermal and moisture protective performance of firefighter protective clothing in fire disaster [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 152-158.
[11] . Research progress of heat transfer mechanism of air gap under firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 167-172.
[12] . Effects of light and moisture on performance of fabrics for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 82-88.
[13] . Evaluation of thermal protective performance of fabric for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 110-115.
[14] . Devilopment and current status on performance test and evaluation of thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(07): 162-168.
[15] . Application and feasibility analysis of phase change materials for fire-fighter suit [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 124-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!