Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 7-14.doi: 10.13475/j.fzxb.20181103908

• Fiber Materials • Previous Articles     Next Articles

Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof

ZHANG Anying1, WANG Zhaoying1, WANG Rui1(), DONG Zhenfeng1, WEI Lifei2, WANG Deyi3   

  1. 1. School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
    3. IMDEA Materials Institute, Madrid 28906, Spain
  • Received:2018-11-14 Revised:2019-01-05 Online:2019-04-15 Published:2019-04-16
  • Contact: WANG Rui E-mail:clywangrui@bift.edu.cn

Abstract:

In order to study the flame retardancy and spinnability of poly(L-lactic acid) (PLLA), an environmentally [(6-oxo-6H-dibenzo-(c,e)(1,2)-oxaphosphorin-6-one)methyl] butanedioic acid (DDP) flame retardant PLLA system was designed. PLLA/DDP composites were prepared by twin-screw melt extrusion, and the structures and properties thereof were characterized by cone calorimetry, limiting oxygen index, vertical combustion, scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis. The effect of the flame retardant content on the flame retardant properties of PLLA and the flame retardant mechanism of DDP on PLLA were also investigated. The spinning process and fiber properties at the optimum flame retardant dosage were studied. The results show that when the mass content of DDP is 9%, the LOI of the composite reaches 29% and the UL-94 test reaches grade V-0. The amount of carbon residue of the composite at 800 ℃ increases from 10.7% to 13.5%, and the composite has excellent spinnability. After the nascent fiber is stretched and heat set by 3 times, the breaking strength is 1.77 cN/dtex, and the elongation at break is 44.9%.

Key words: poly(L-lactic acid), halogen-free flame retardant, flame retardancy, spinnability, breaking strength

CLC Number: 

  • TQ342.89

Tab.1

Ratio of composites%"

样品编号 PLLA质量分数 DDP质量分数
1 100 0
2 97 3
3 95 5
4 93 7
5 91 9
6 89 11

Tab.2

Spinning technology parameters"

样品
编号
纺丝温度/℃ 卷绕速度/
(m·min-1)
热定型温度/℃
Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 管道 组件 上辊 下辊 热辊
1 160 185 180 180 180 180 500 60 75 85
5 165 195 210 210 210 210 500 75 80 90

Fig.1

SEM cross section images of flame retardant PLLA composites(×500)"

Fig.2

DSC heating(a) and cooling (b) curves of flame retardant PLLA composites"

Tab.3

Results of DSC of flame retardant PLLA composites℃"

样品
编号
θg θcc θm θmc θ0 θm-θ0
1 60 98 174 99 91 83
2 60 96 173 97 87 86
3 59 98 172 93 90 82
4 59 97 172 92 89 83
5 59 97 172 91 89 83
6 59 98 170 89 81

Fig.3

TG and DTG curves of PLLA, DDP and its composite"

Fig.4

TG and DTG curves of flame retardant PLLA composites"

Fig.5

Cone calorimetry curves of flame retardant PLLA composites. (a) Heat release rate curve;(b) Total heat release curve"

Tab.4

LOI and UL-94 results of flame retardant PLLA composites"

样品
编号
LOI/
%
UL-94测试结果 30 s内熔滴数
t1/s t2/s 等级
1 19 20.9 23.0 V-2 18
2 22 10.5 4.5 V-2 16
3 25 17.4 10.5 V-2 16
4 25 12.4 6.3 V-2 14
5 29 8.1 4.5 V-0 13(自熄)
6 27 9.5 4.3 V-0 13(自熄)

Fig.6

FT-IR spectra of 1# and 5# at different temperatures"

Fig.7

FT-IR spectra of gas of thermal degradation of samples at different temperature"

Fig.8

3-D FT-IR spectra of TGA gaseous products of 1# and 5# sample"

[1] 纪国营, 王继文, 翟文涛, 等. 聚乳酸/淀粉生物基复合材料的发泡[J]. 塑料, 2013,42(6):54-57.
JI Guoying, WANG Jiwen, ZHAI Wentao. et al. Foaming of PLA/starch biocomposite[J]. Plastic, 2013,42(6):54-57.
[2] LIM L T, AURAS R, RUBINO M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science, 2008,33(8):820-852.
[3] CHEN L, WANG Y Z. A review on flame retardant technology in China: Part I: development of flame retardants[J]. Polymers for Advanced Technologies, 2010,21(1):1-26.
[4] REN J. Biodegradable Poly(lactic acid): Synthesis, Modification, Processing and Applications[M]. Beijing: Tsinghua University Press, 2011: 6-17.
[5] BOURBIGOT S, FONTAINE G. Flame retardancy of polylactide: an overview[J]. Polymer Chemistry, 2010,1(9):1413-1422.
[6] 徐亚雷, 侯连龙, 夏鹏. 聚乳酸高性能化的研究进展[J]. 塑料工业, 2012,40(10):14-19.
XU Yalei, HOU Lianlong, XIA Peng. Study progress on the performance promotion of PLA[J]. China Plastics Industry, 2012,40(10):14-19.
[7] 宋艳朋, 王德义, 林玲, 等. 主链含磷阻燃聚乳酸的制备及其与聚乳酸共混材料的研究[C]// 中国阻燃学术年会. 北京:中国阻燃学会, 2009: 156-160.
SONG Yanpeng, WANG Deyi, LIN Ling, et al. Preparation of flame retardant polylactic acid containing phosphor in main chain and its application with polylactic acid blends[C]// China Flame Retardant Academic Annual Meeting. Beijing: China Flame Perarlant Society, 2009: 156-160.
[8] 张胜, 陈宸, 谷晓昱, 等. 聚乳酸的无卤阻燃研究进展[J]. 塑料, 2015,44(4):6-12.
ZHANG Sheng, CHEN Chen, GU Xiaoyu, et al. Research progress on non-halogen flame retardant polylactic acid[J]. Plastic, 2015,44(4):6-12.
[9] 周旋, 武永刚, 李娟, 等. 聚乳酸阻燃改性研究进展[J]. 工程塑料应用, 2012,40(8):98-103.
ZHOU Xuan, WU Yonggang, LI Juan, et al. Research progress on flame retardance modification of poly(lactic acid)[J]. Engineering Plastics Application, 2012,40(8):98-103.
[10] PRICE D, PYRAH K, HULL T R, et al. Flame retarding poly(methyl methacrylate) with phosphorus-containing compounds: comparison of an additive with a reactive approach[J]. Polymer Degradation & Stability, 2001,74(3):441-447.
[11] FANG Keyi, LI Juan, KE Chenhao, et al. Synergistic effect between a novel hyperbranched flame retardant and melamine pyrophosphate on the char forming of polyamide 6[J]. Journal of Macromolecular Science: Part D-Reviews in Polymer Processing, 2010,49(14):1489-1497.
[12] CHANG S J, CHANG F C. Characterizations for blends of phosphorus-containing copolyesters with poly (ethylene terephthalate)[J]. Polym Eng Sci, 1998,38(9):1471-1481.
[13] WANG C S, LIN C H. Synjournal and properties of phosphorus containing advanced epoxy resins[J]. Journal of Applied Polymer Science, 2015,75(3):429-436.
[14] ZHANG W, LI X, GUO X, et al. Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites[J]. Polymer Degradation & Stability, 2010,95(12):2541-2546.
[15] CHENG X W, GUAN J P, TANG R C, et al. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric[J]. Journal of Cleaner Production, 2016,124:114-119.
[16] 张玉梅. 聚酯熔体直纺超细旦长丝POY可纺性研究[D]. 天津:天津大学, 2012: 10-19.
ZHANG Yumei. Study on spinnability of polyethylene terephthalate microfilaments pre-oriented yarn by direct melt spinning[D]. Tianjin: Tianjin University, 2012: 10-19.
[17] 魏丽菲, 朱志国, 靳昕怡, 等. 基于三(2-羟乙基)异氰尿酸酯的膨胀型阻燃剂对聚合物燃烧性能的影响[J]. 纺织学报, 2017,38(9):24-31.
WEI Lifei, ZHU Zhiguo, JIN Xinyi, et al. Influence of tris (2-hydroxyethyl) isocyanurate-based intumescent flame retardants on combustion performance of polymers[J]. Journal of Textile Research, 2017,38(9):24-31.
[18] 刘淑强, 张蕊萍, 贾虎生, 等. 可生物降解聚乳酸长丝的熔融纺丝工艺[J]. 纺织学报, 2012,33(11):11-14.
LIU Shuqiang, ZHANG Ruiping, JIA Husheng, et al. Melt spinning process of biodegradable PLA filaments[J]. Journal of Textile Research, 2012,33(11):11-14.
[19] 俞建勇, 赵恒迎, 程隆棣. 新型绿色环保纤维: 聚乳酸纤维性能及其应用[J]. 纺织导报, 2003(3):63-66.
YU Jianyong, ZHAO Hengying, CHENG Longdi. New green environmental fiber: polylactic acid fiber performance and its application[J]. China Textile Leader, 2003(3):63-66.
[20] 王亚丽, 周微伟. 熔融纺丝法中聚乳酸切片干燥工艺探讨[J]. 天津纺织科技, 2009(4):11-14.
WANG Yali, ZHOU Weiwei. Discussion on drying process of polylactic acid slices in melt spinning[J]. Tianjin Textile Science & Technology, 2009(4):11-14.
[1] DANG Danyang, CUI Lingyan, WANG Liang, LIU Yong. Preparation and properties of cellulose nanofiber / montmorillonite composite aerogels [J]. Journal of Textile Research, 2020, 41(02): 1-6.
[2] SUN Yufa, ZHOU Xiangdong. Synthesis and characterization of novel phosphorous and nitrogen-containing flame retardant for cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 79-85.
[3] WEI Yanhong, LIU Xinjin, XIE Chunping, SU Xuzhong, JI Yijun. Structure and properties of several differentiated polyester fibers [J]. Journal of Textile Research, 2019, 40(11): 13-19.
[4] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress on flame retardant modification of polyacrylonitrile fiber [J]. Journal of Textile Research, 2019, 40(08): 181-188.
[5] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress of halogen-free flame retardancy and smoke suppression of polyacrylonitrile [J]. Journal of Textile Research, 2019, 40(07): 182-188.
[6] LI Qianglin, HUANG Fangqian, XIAO Xiuchan, QIU Cheng, WU Juzhen. Review on novel halogen-free polymer flame retardants [J]. Journal of Textile Research, 2019, 40(04): 177-184.
[7] . Preparation and properties of high strength and high modulus polyoxymethylene fibers [J]. Journal of Textile Research, 2018, 39(10): 1-6.
[8] . Preparation and performance of pentaerythritol phosphate/zine diethyl phosphate synergistic flame retardant polyamide 6 [J]. Journal of Textile Research, 2018, 39(09): 8-14.
[9] . Moisture absorption and sweat transport finishing o meta-aramid fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 80-86.
[10] . Flame retardant finishing of polyester fabric with phenyl phosphate ester containing triazine structure [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 98-102.
[11] . Preparation and performance of melamine fiber felt [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 65-68.
[12] . Influence of different drawing methods on appearance and yarn quality of cloud yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 43-48.
[13] . Flame retardant finishing of silk fabrics with boron phosphate doped silica sol [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 96-101.
[14] . Preparation and properties of phosphorus-containing flame retardant polyacrylonitrile fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 1-5.
[15] . Synergistic effect between cyclotriphosphazene and triazinederivatives on flame retardancy of poly(ethylene terethalate) [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!