Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (12): 86-92.doi: 10.13475/j.fzxb.20181107107

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface

XU Lin1,2,3, REN Yu1,2(), ZHANG Hongyang1,2, WU Shuangquan2, LI Ya2, DING Zhirong1, JIANG Wenwen1, XU Sijun1, ZANG Chuanfeng1   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. Kuangda Technology Group Co., Ltd., Changzhou, Jiangsu 213162, China
    3. Yantai TAPARAN Advanced Manufacturing Technology Co., Ltd., Yantai, Shandong 264006, China
  • Received:2018-11-29 Revised:2019-09-05 Online:2019-12-15 Published:2019-12-18
  • Contact: REN Yu E-mail:ren.y@ntu.edu.cn

Abstract:

In order to develop polyester fabrics with water repellent, antifouling and ultraviolet resistant properties, nano-titania was formed in-situ on the polyester fabric surface by sol-hydrothermal method using tetrabutyl titanate as precursor, and then subjected to low surface energy modification by fluorosi-lane (1H,1H,2H,2H-perfluorooctyltriethoxysilane). The surface morphology, crystalline structure, surface chemical composition and surface wettability of polyester fabrics were analyzed, and the oil resistance and ultraviolet resistance of the treated polyester fabrics were tested. The results show that anatase phase titania is formed in-situ on the surface of polyester fabric, and fluorosilane is uniformly deposited on the fibers after the treatment. The water-repellent and oil-repellent properties of polyester fabrics treated with titania-fluorosilane are significantly improved. The surface water contact angle reaches 153°, and the oil-repellent grade reaches 6 grades. The average ultraviolet transmittance of ultraviolet A and ultraviolet B segments decreases to 0.37% and 0.01%, respectively.

Key words: TiO2, polyester fabric, fluorosilane, superhydrophobicity property, ultraviolet resistance, functional textiles

CLC Number: 

  • O614

Tab.1

Volume ratio of raw materials for different TiO2 sol production schemes"

方案编号 去离子水、钛酸四丁酯和无水乙醇体积比
1 5∶3∶30
2 10∶3∶30
3 15∶3∶30
4 20∶3∶30

Fig.1

Diagram of preparation of polyester fabrics modified by nano TiO2 and fluorosilanes"

Fig.2

XRD diagram of TiO2 sol, polyester fabric before and after modification with nano TiO2 and fluorosilanes"

Fig.3

SEM images of polyester fabric before and after modified by nano TiO2 and fluorosilanes(×10 000).(a) Polyester fabric; (b) Nano TiO2 modified fabric; (c) Nano TiO2 and fluorosilanes modified fabric"

Tab.2

Relative element weight of polyester surfaces%"

试样名称 C O Ti F Si
涤纶织物原样 64.68 35.32
纳米TiO2整理织物 57.59 30.09 12.32
纳米TiO2-氟硅烷整理织物 54.51 30.64 11.38 3.11 0.36

Fig.4

Element distribution of polyester fabric modified with nano TiO2 and fluorosilanes"

Fig.5

FT-IR spectrum of polyester fabric before and after modification with nano TiO2 and fluorosilanes"

Fig.6

Effect of fluorosilane concentration on water contact angle of polyester fabric modified with nano TiO2 and fluorosilanes"

Tab.3

Contact angle and wetting time of hydrocarbons on polyester modified with nano TiO2 and fluorosilanes"

碳氢化合物名称 接触角/(°) 润湿时间/s
正十六烷 132 >120
正十四烷 129 >120
正十二烷 125 >120
正癸烷 124 55
正辛烷 106 16

Fig.7

Oil repellent and pollution resistance properties of polyester fabric. (a) Polyester fabric; (b) Nano SiO2 and fluorosilanes modified polyester fabric"

Fig.8

UV-vis spectra of polyester fabrics"

Tab.4

UV transmittance of polyester fabrics modified by nano TiO2 and fluorosilanes"

试样名称 紫外线A段
透光率/%
紫外线B段
透光率/%
UPF
涤纶织物原样 2.98 0.23 37.6
纳米TiO2整理涤纶织物 0.55 0.02 42.3
纳米TiO2-氟硅烷整理涤纶织物 0.37 0.01 43.9
[1] 王晓娜, 张银, 任煜. 空气等离子体处理对涤纶非织造布表面亲水性的影响[J]. 合成纤维工业, 2016,39(4):24-27.
WANG Xiaona, ZHANG Yin, REN Yu. Effect of air plasma treatment on hydrophilic property of polyester nonwoven fabrics[J]. China Synthetic Fiber Industry, 2016,39(4):24-27.
[2] ALPAY H R. Assessing reflectance and color differences of cotton fabrics after abrasion[J]. Textile Research Journal, 2005,75(4):357-361.
[3] 张圣易, 丁志荣, 杨艳艳. 蒸镀超疏水涤纶织物的制备及其疏水性能[J]. 纺织学报, 2017,38(4):85-90.
ZHANG Shengyi, DING Zhirong, YANG Yanyan. Preparation and properties of super-hydrophobic polyester fabric by vacuum evaporation[J]. Journal of Textile Research, 2017,38(4):85-90.
[4] 徐林, 任煜, 张红阳, 等. 碱减量-氟硅烷处理涤纶织物的拒水拒油性[J]. 印染, 2017(18):1-4.
XU Lin, REN Yu, ZHANG Hongyang, et al. Water- and oil-repellency of polyester fabrics after alkali deweighting-fluoroalkyl silanes treatment[J]. China Dyeing & Finishing, 2017(18):1-4.
[5] ALEXANDER S, EASTOE J, LORD A, et al. Branched hydrocarbon low surface energy materials (LSEMs) for superhydrophobic nanoparticle derived surfaces[J]. Acs Applied Materials & Interfaces, 2016,8(1):660-667.
doi: 10.1021/acsami.5b09784 pmid: 26641156
[6] 袁晓雨, 李伟, 朱振国, 等. 超疏水聚酯滤布的性能及其在油水分离中的应用[J]. 纺织学报, 2017,38(3):108-113.
YUAN Xiaoyu, LI Wei, ZHU Zhenguo, et al. Performance of superhydrophobic polyester filter cloth and its application in oil /water separation[J]. Journal of Textile Research, 2017,38(3):108-113.
[7] 张芳, 邱建伟, 陈衍夏, 等. 可见光响应型TiO2光催化材料的制备及应用[J]. 印染, 2011,37(21):10-13.
ZHANG Fang, QIU Jianwei, CHEN Yanxia, et al. Synjournal and application of visible light responding TiO2 photocatalyst[J]. China Dyeing & Finishing, 2011,37(21):10-13.
[8] 杨梓薇, 周顺利, 王锐, 等. 纳米二氧化钛负载棉织物的制备及性能[J]. 高等学校化学学报, 2017,38(10):1880-1887.
YANG Ziwei, ZHOU Shunli, WANG Rui, et al. Preparation and characterization of self-cleaning cotton fabric[J]. Chemical Journal of Chinese Universities, 2017,38(10):1880-1887.
[9] 贾国强, 霍瑞亭, 李文君. 光催化自清洁涂层纺织品的制备[J]. 纺织学报, 2017,38(5):93-97.
JIA Guoqiang, HUO Ruiting, LI Wenjun. Preparation of photo-catalysis self-cleaning coating fabrics[J]. Journal of Textile Research, 2017,38(5):93-97.
[10] HAFIZAH N, SOPYAN I. Nanosized TiO2 photocatalyst powder via sol-gel method: effect of hydrolysis degree on powder properties[J]. International Journal of Photoenergy, 2009(6):207-216.
[11] JUENGSUWATTANANON K, JAROENWORALUCK A, PANYATHANMAPORN T, et al. Effect of water and hydrolysis catalyst on the crystal structure of nanocrystalline TiO2 powders prepared by sol-gel method[J]. Physica Status Solidi A: Applications and Materials Science, 2007,204(6):1751-1756.
[12] 李蕊, 孙奇, 王海霞, 等. pH值对钛酸四丁酯水解产物的影响[J]. 山东陶瓷, 2010,33(4):32-39.
LI Rui, SUN Qi, WANG Haixia, et al. Influence of pH value on the hydrolysis product of tetrabutyl titanate[J]. Shandong Ceramics, 2010,33(4):32-39.
[13] MAHDI E M, HAMDI M, YUSOFF M, et al. XRD and EDXRF analysis of anatase nano-TiO2 synthesized from mineral precursors[J]. Advanced Materials Research, 2013,620:179-185.
[14] MORITZ N, AREVA S, WOLKE J, et al. TF-XRD examination of surface-reactive TiO2 coatings produced by heat treatment and CO2 laser treatment[J]. Biomaterials, 2005,26(21):4460-4467.
pmid: 15701375
[15] FRONTISTIS Z, DROSOU C, TYROVOLA K, et al. Experimental and modeling studies of the degradation of estrogen hormones in aqueous TiO2, suspensions under simulated solar radiation[J]. Industrial & Engineering Chemistry Research, 2012,51:16552-16563.
[16] KALE B M, WIENER J, MILITKY J, et al. Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness[J]. Carbohydrate Polymers, 2016,150:107-113.
doi: 10.1016/j.carbpol.2016.05.006 pmid: 27312619
[17] AZFARNIAM L, NOROUZI M. Multifunctional polyester fabric using a multicomponent treatment[J]. Fibers & Polymers, 2016,17(2):298-304.
[18] GAMINIAN H, MONTAZER M. Simultaneous nano TiO2 sensitization, application and stabilization on polyester fabric using madder and NaOH producing enhanced self-cleaning with hydrophilic properties under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017,332:158-166.
[19] 杨亚玲, 张杨杨, 刘金鑫, 等. 涤纶织物负载二氧化钛的方法及影响因素[J]. 印染助剂, 2017,34(9):18-22.
YANG Yaling, ZHANG Yangyang, LIU Jinxin, et al. Method and influence factors of polyester fabric loaded titanium dioxide[J]. Textile Auxiliaries, 2017,34(9):18-22.
[20] 梁慧, 张光先, 张凤秀, 等. 紫外线-纳米二氧化钛改性高亲水涤纶织物的制备[J]. 纺织学报, 2013,34(3):82-86.
LIANG Hui, ZHANG Guangxian, ZHANG Fengxiu, et al. Preparation of highly hydrophibic polyester fabrics via UV irradiation/nano-TiO2 modification[J]. Journal of Textile Research, 2013,34(3):82-86.
[21] 薛朝华, 张平, 姬鹏婷, 等. TiO2/SiO2核壳结构微粒的合成及超疏水防紫外线功能织物的制备[J]. 陕西科技大学学报, 2013,31(6):45-50.
XUE Chaohua, ZHANG Ping, JI Penting, et al. Preparation of TiO2/SiO2 core-shell particles and their coating on fibers for superhydrophobic textiles with UV-shielding property[J]. Journal of Shaanxi University of Science Technology, 2013,31(6):45-50.
[22] MAN C Z, ZHANG C M, LIU Y M, et al. Poly (lactic acid)/titanium dioxide composites: preparation and performance under ultraviolet irradiation[J]. Polymer Degradation and Stability, 2012,97(6):856-862.
[1] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[2] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester / cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[3] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[4] LIU Guojin, HAN Pengshuai, CHAI Liqin, WU Yu, LI Hui, GAO Yafang, ZHOU Lan. Preparation and stability of self-crosslinking P(St-NMA) photonic crystals with structural colors on polyester fabrics [J]. Journal of Textile Research, 2020, 41(05): 99-104.
[5] WANG Sen, CHEN Ying. Preparation of nano-TiO2 stabilized emulsion and its application in microencapsulation [J]. Journal of Textile Research, 2020, 41(05): 105-111.
[6] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole / silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[7] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[8] CHANG Shuo, SHEN Jiajia. Research progress of graphene durable finishing of textiles [J]. Journal of Textile Research, 2020, 41(02): 179-186.
[9] CHEN Ying, ZHOU Shuang, WEI Tianjing, FANG Haoxia, LI Yufei. Preparation and properties of polypyrrole composite fabric by soft template process [J]. Journal of Textile Research, 2019, 40(12): 93-97.
[10] DAI Yue, ZHANG Ruiping, WANG Qiuping, HU Ya'nan, ZHANG Xianguo. Deodorizing effect of polyester fabric treated by citric acid/β-cyclodextrin [J]. Journal of Textile Research, 2019, 40(12): 104-108.
[11] ZHU Jinming, QIAN Jianhua, SUN Liying, LI Zhengping, PENG Huimin. Properties of functionalized composite polyester fabric prepared from silver nanowires of high aspect ratio [J]. Journal of Textile Research, 2019, 40(11): 113-118.
[12] WANG Fanghe, WANG Rui, WEI Lifei, WANG Zhaoying, ZHANG Anying, WANG Deyi. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics [J]. Journal of Textile Research, 2019, 40(11): 106-112.
[13] HAN Ye, ZHANG Hui, ZHU Guoqing, WU Hailiang. Effect of polyethylene glycol on photocatalytic properties of polyethylene terephthalate fibers treated with titanium sulfate under hydrothermal conditions [J]. Journal of Textile Research, 2019, 40(10): 33-41.
[14] GAO Jing, ZHANG Jun, ZHAO Zeyang, LI Wandi, WANG Jiajun, WANG Lu. Antibacterial durability and wearability of polyester/cotton fabric modified collaboratively by graphene oxide and TiO2/SiO2 [J]. Journal of Textile Research, 2019, 40(10): 120-126.
[15] GAO Jing, WANG Lu. Influence of pretreatment process on superhydrophobic modification of wool/polyester fabric [J]. Journal of Textile Research, 2019, 40(09): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!