Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 184-189.doi: 10.13475/j.fzxb.20181204506

• Comprehensive Review • Previous Articles     Next Articles

Progress review on research of aromatic polyamide nanofiber composites

ZHAO Yinghui, GU Yingchun, HU Fei, LIN Jiayou, YE Lanlin, LI Jingjing, CHEN Sheng()   

  1. College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610025, China
  • Received:2018-12-21 Revised:2019-10-16 Online:2020-01-15 Published:2020-01-14
  • Contact: CHEN Sheng E-mail:chensheng@scu.edu.cn

Abstract:

In order to better understand the state-of-the-art in developing aromatic polyamide nanofibers, this paper summarizes the preparation methods for making aromatic polyamide nanofibers, including deprotonation, electrospinning and self-assembly synthesis. Focusing on the research in aromatic polyamide nanofibers composites for supercapacitor electrode materials, lithium ion battery separator materials, filter membrane materials and fiber reinforcement materials, this paper mainly scrutinizes the preparation methods and reviews the unique properties of aromatic polyamide nanofiber composites. Relevant research in this area has provided the theoretical basis for achieving the controllable preparation and structural modulation of these nanocomposites. Finally, the challenges of aromatic polyamide nanofiber composites were spelt out, and it was concluded that aromatic polyamide nanofibers have a good development prospect as novel nanoscale ″building blocks″.

Key words: aromatic polyamide, nanofiber, deprotonation method, electrode material, fiber reinforced composite

CLC Number: 

  • TQ342.72

Fig.1

Schematic illustration of deprotonation of aromatic polyamide nanofibers"

[1] KAPOOR R, PANGENI L, BANDARU A K, et al. High strain rate compression response of woven Kevlar reinforced polypropylene composites[J]. Composites Part B: Engineering, 2016,89:374-382.
doi: 10.1016/j.compositesb.2015.11.044
[2] 孙鑫, 霍康伟, 支景鹏, 等. 碳纳米管/芳纶纤维复合增强PVC材料的性能研究[J]. 现代塑料加工应用, 2018,30(1):13-15.
SUN Xin, HUO Kangwei, ZHI Jingpeng, et al. Properties of carbon nanotube/aramid fiber composite reinforced PVC materials[J]. Modern Plastics Processing Applications, 2018,30(1):13-15.
[3] HE X, QU Y, PENG J, et al. A novel botryoidal aramid fiber reinforcement of a PMMA resin for a restorative biomaterial[J]. Biomaterials Science, 2017,5(4):808-816.
pmid: 28275764
[4] YUE L Y, LI W, ZU X D, et al. Performance of carbon fiber reinforced rubber composite armour against shaped charge jet penetration[J]. MATEC Web of Conferences, 2016,39:01012-01017.
doi: 10.1051/matecconf/20163901012
[5] CHENG Z, HAN Y, LUO L, et al. Grafting degradable coordination polymer on aramid fiber surface to improve its interfacial properties[J]. Materials Letters, 2018,233:102-106.
doi: 10.1016/j.matlet.2018.08.134
[6] QI G, ZHANG B, DU S, et al. Estimation of aramid fiber/epoxy interfacial properties by fiber bundle tests and multiscale modeling considering the fiber skin/core structure[J]. Composite Structures, 2017,167:1-10.
doi: 10.1016/j.compstruct.2017.01.047
[7] 邓婷婷, 张光先, 代方银, 等. 对位芳纶磷酸化表面改性[J]. 纺织学报, 2015,36(11):11-19.
DENG Tingting, ZHANG Guangxian, DAI Fangyin, et al. Surface modification of para-aramid by phosphorylation[J]. Journal of Textile Research, 2015,36(11):11-19.
[8] WU S R, SHEU G S, SHYU S S, et al. Kevlar fiber-epoxy adhesion and its effect on composite mechanical and fracture properties by plasma and chemical treatment[J]. Journal of Applied Polymer Science, 1996,62(9):1347-1360.
doi: 10.1002/(ISSN)1097-4628
[9] 严志云, 石虹桥, 刘安华, 等. 低温等离子体改性芳纶表面的XPS分析[J]. 纺织学报, 2007,28(8):19-22.
YAN Zhiyun, SHI Hongqiao, LIU Anhua, et al. XPS analysis of low-temperature plasma-modified aramid fiber surface[J]. Journal of Textile Research, 2007,28(8):19-22.
[10] YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011,5(9):6945-6954.
doi: 10.1021/nn2014003 pmid: 21800822
[11] LI J, TIAN W, YAN H, et al. Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery[J]. Journal of Applied Polymer Science, 2016,133(30):43623-43631.
[12] LYU J, ZGAO X, HOU X, et al. Electromagnetic interference shielding based on a high strength polyaniline-aramid nanocomposite[J]. Composites Science & Technology, 2017,149:159-165.
[13] TAKAYANAGI M, KATAYOSE T. N-substituted poly(p-phenylene terephthalamide)[J]. Journal of Polymer Science Part A Polymer Chemistry, 1981,19(5):1133-1145
[14] BUECH R R, SWEENY W, SCHMIDT H W, et al. Preparation of aromatic polyamide polyanions: a novel processing strategy for aromatic polyamides[J]. Macromolecules, 1990,23(4):1065-1072.
doi: 10.1021/ma00206a026
[15] YAO J, JIN J, LEPORE E, et al. Electrospinning of p-aramid fibers[J]. Macromolecular Materials & Engineering, 2016,300(12):1238-1245.
[16] YEAGER M P, HOFFMAN C M, XIA Z, et al. Method for the synjournal of para-aramid nanofibers[J]. Journal of Applied Polymer Science, 2016,133(42):44082-44090.
[17] YAN H, LI J, TIAN W, et al. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers[J]. RSC Advances, 2016,6(32):26599-26605.
doi: 10.1039/C6RA01602B
[18] KWON S R, ELINSKI M, BATTEAS J D, et al. Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes[J]. ACS Applied Materials & Interfaces, 2017,9:17124-17135
[19] FAN J, SHI Z, TIAN M, et al. Graphene/aramid nanofiber nanocomposite paper with high mechanical and electrical performances[J]. RSC Advances, 2013,3(39):17664-17667.
doi: 10.1039/c3ra42515k
[20] KWON S R, HARRIS J, ZHOU T, et al. Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power[J]. ACS Nano, 2017,11(7):6682-6690.
pmid: 28682590
[21] LI Y, REN G, ZHANG Z, et al. A strong and highly flexible aramid nanofibers/PEDOT:PSS film for all-solid-state supercapacitors with superior cycling stability[J]. Journal of Materials Chemistry A, 2016(4):17324-17332.
[22] HU S, LIN S, TU Y, et al. Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries[J]. Journal of Materials Chemistry A, 2016,4(9):3513-3526.
doi: 10.1039/C5TA08694A
[23] TUNG S O, HO S, YANG M, et al. A dendrite-suppressing composite ion conductor from aramid nanofibers[J]. Nature Communications, 2015,6:6152-6159.
doi: 10.1038/ncomms7152 pmid: 25626170
[24] TUNG S O, THOMPSON L T, LARAMIE S, et al. Nanoporous aramid nanofiber separators for non-aqueous redox flow batteries[J]. Nature Communications, 2018,9:4193.
doi: 10.1038/s41467-018-05752-x pmid: 30305636
[25] 袁永强. 芳纶纳米纤维的制备及其在液体过滤中的应用[D]. 苏州:苏州大学, 2016:2-30.
YUAN Yongqiang. Preparation of aramid nanofibers and their application in liquid filtration[D]. Suzhou: Soochow University, 2016:2-30.
[26] YUAN Y Q, LI J, LIU Y, et al. Layer-by-layer self-assembly of aramid nanofibers on nonwoven fabric for liquid filtration[J]. Polymer Composites, 2018,39(7):2411-2419.
doi: 10.1002/pc.v39.7
[27] XU L, ZHAO X, XU C, et al. Water-rich biomimetic composites with abiotic self-organizing nanofiber network[J]. Advanced Materials, 2018,30(1):1703343-1703349
doi: 10.1002/adma.201703343
[28] WANG F, WU Y, HUANG Y, et al. Novel application of graphene oxide to improve hydrophilicity and mechanical strength of aramid nanofiber hybrid membrane[J]. Composites Part A: Applied Science and Manufacturing, 2018,110:126-132.
doi: 10.1016/j.compositesa.2018.04.023
[29] LV L, HAN X, ZONG L, et al. Biomimetic hybridization of kevlar into silk fibroin: nanofibrous strategy for improved mechanic properties of flexible composites and filtration membranes[J]. ACS Nano, 2017,11(8):8178-8184.
doi: 10.1021/acsnano.7b03119 pmid: 28723068
[30] KUANG Q, ZHANG D, YU J C, et al. Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers[J]. The Journal of Physical Chemistry C, 2015,119(49):27467-27477.
doi: 10.1021/acs.jpcc.5b08856
[31] GUAN Y, LI W, ZHANG Y, et al. Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions[J]. Composites Science and Technology, 2017,144:193-201.
doi: 10.1016/j.compscitech.2017.03.010
[32] 顾云智, 黄振祝, 林树东, 等. 芳纶纳米纤维增强聚乙烯醇复合膜的制备与性能[J]. 精细化工, 2018,35(8):1288-1293.
GU Yunzhi, HUANG Zhenzhu, LIN Shudong, et al. Preparation and properties of aramid nanofibers reinforced polyvinyl alcohol composite membrane[J]. Fine Chemical Industry, 2018,35(8):1288-1293.
[33] LIN J, BANG S H, MALAKOOTI M H, et al. Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites[J]. ACS Applied Materials & Interfaces, 2017,9(12):11167-11175.
pmid: 28267314
[34] WANG F, WU Y, HUANG Y, et al. High strength, thermostable and fast-drying hybrid transparent membranes with POSS nanoparticles aligned on aramid nanofibers[J]. Composites Part A: Applied Science and Manufacturing, 2018,110:154-161.
doi: 10.1016/j.compositesa.2018.04.031
[35] YANG M, CAO K, YEOM B, et al. Aramid nanofiber-reinforced transparent nanocomposites[J]. Journal of Composite Materials, 2015,49(15):1873-1879.
doi: 10.1177/0021998315579230
[36] FAN J, SHI Z, ZHANG L, et al. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement[J]. Nanoscale 2012,4(22):7046-7055.
doi: 10.1039/c2nr31907a
[37] 范金辰. 石墨烯的制备与功能化及其在复合材料中的应用研究[D]. 上海:上海交通大学, 2014:6-15.
FAN Jinchen. Preparation and functionalization of graphene and its application in composite materials[D]. Shanghai: Shanghai Jiaotong University, 2014:6-15.
[38] CAO W, YANG L, QI X, et al. Carbon nanotube wires sheathed by aramid nanofibers[J]. Advanced Functional Materials, 2017,27(34):1701061-1901072.
doi: 10.1002/adfm.v27.34
[39] PARK B, LEE W, LEE E, et al. Highly tunable interfacial adhesion of glass fiber by hybrid multilayers of graphene oxide and aramid nanofiber[J]. ACS Applied Materials & Interfaces, 2015,7(5):3329-3334.
pmid: 25599567
[40] LEE J U, PARK B, KIM B S, et al. Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content[J]. Composites Part A: Applied Science & Manufacturing, 2016,84:482-489.
[41] IIJIMA M, KAMIYA H. Non-aqueous colloidal processing route for fabrication of highly dispersed aramid nanofibers attached with Ag nanoparticles and their stability in epoxy matrixes[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2015,482:195-202.
[42] LI J, FAN J, LIAO K, et al. Facile fabrication of multifunctional aramid nanofiber-based composite paper[J]. RSC Advances, 2016,6(93):90263-90272.
doi: 10.1039/C6RA15895A
[43] LYU J, WANG X, LIU L, et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers[J]. Advanced Functional Materials, 2016,26(46):8435-8445.
doi: 10.1002/adfm.v26.46
[1] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[2] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[3] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[4] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[5] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[6] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[7] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[8] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[9] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[10] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[11] FANG Zhou, SONG Leilei, SUN Baojin, LI Wenxiao, ZHANG Chao, YAN Jun, CHEN Lei. Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants [J]. Journal of Textile Research, 2020, 41(08): 135-144.
[12] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
[13] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[14] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots/polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[15] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!