Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 56-62.doi: 10.13475/j.fzxb.20190101908

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of carbon fiber/polyester electrocardiogram monitoring embroidery electrode

DONG Ke1, LI Siming1, WU Guanzheng1, HUANG Hongrong2, LIN Zhongshi2, XIAO Xueliang1()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Shenzhen Institute for Drug Control(Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong 518057, China
  • Received:2019-01-10 Revised:2019-10-24 Online:2020-01-15 Published:2020-01-14
  • Contact: XIAO Xueliang E-mail:xiao_xueliang@jiangnan.edu.cn

Abstract:

Aiming at the preparation of a biocompatible human electrocardiogram (ECG) monitoring electrode for wearable electronic clothing for medical care, a new carbon fiber/polyester embroidery fabric electrode was developed by embroidering carbon fiber/polyester composite filaments to form a conductive material. The electrical properties and cytotoxicity of the electrodes were tested and analyzed. A self-developed wearable belt ECG monitoring system was used to evaluate the quality of the human body ECG signal collected by the carbon fiber/polyester fabric electrodes in comparison with silver-plated polyamide/polyester embroidery electrodes. The results demosntrate that the silver plated electrodes had better electrical properties, but for long-term ECG signal monitoring the impedance of the carbon fiber/polyester electrodes appeared to have similar performance to that of the silver plated electrodes. Compared with the medical gel electrode, the ECG signals collected from the two types of embroidery electrodes demonstrate good quality, meeting the needs for medical diagnosis. Cytotoxicity test revealed that silver-plated electrodes were highly cytotoxic with a cell survival rate of only 3%, whilst for the carbon based electrodes the cell survival rate was 107% with nil cytotoxicity. The research show that the embroidery carbon based electrodes have good biocompatibility and meets the test standard of medical materials in vitro.

Key words: fabric electrode, carbon fiber/polyester composite filament, wearable monitoring system, electrocardiogram signal, biocompatibility, medical health

CLC Number: 

  • TS101.4

Fig.1

Sliced yarn image under microscope. (a) Carbon fiber/polyester filament cross section;(b) Silver-plated polyamide/polyester filament cross section"

Fig.2

Embroidered fabric electrode. (a) Schematic diagram of embroidered fabric electrode;(b) Embroidered electrode"

Tab.2

Embroidery process parameters"

织物电极 针迹
类型
针迹
长度/
mm
针迹
间距/
mm
针速/
(r·min-1)
碳纤维/
涤纶刺绣电极
直线针 5 1.5 500
镀银锦纶/
涤纶刺绣电极
直线针 5 1.5 500

Fig.3

Impedance test. (a) Model diagram;(b) Equivalent circuit diagram"

Fig.4

Skin-electrode impedance test. (a) Schematic diagram of testing principle; (b) Test method"

Fig.5

Wearable ECG acquisition system. (a) Wearable ECG signal monitoring system; (b) Belt wearable ECG collection clothing"

Fig.6

Cell morphology in leaching solution under microscope. (a) Silver-plated polyamide/polyester embroidery electrode;(b) Carbon fiber/polyester embroidery electrode;(c) Negative control group"

Fig.7

Test result of body skin-electrode impedance"

Fig.8

ECG signals collected by fabric electrodes. (a) Gel electrode; (b) Carbon fiber/polyester embroidery electrode; (c) Silver-plated polyamide/polyester embroidery electrode"

Tab.3

ECG monitoring and performance analysis comparisons between each electrode"

电极名称 QRS-波群 P-波 T-波 R-波振幅 稳定时间 R-波振幅变化 分数
合计
实际 分数 实际 分数 实际 分数 实际/mV 分数 实际/s 分数 实际/mV 分数
凝胶粘贴电极 存在 2 存在 2 存在 2 2.40 2 ≤10 1 0.06 1 10
碳纤维/
涤纶刺绣电极
存在 2 存在 2 存在 2 2.08 1 12.3 0 0.12 0 7
镀银锦纶/
涤纶刺绣电极
存在 2 存在 2 存在 2 2.11 1 ≤10 1 0.18 0 8
[1] 秦路丹, 李明哲, 李广利, 等. 银-氯化银柔性脑电电极的制备及其评价[J]. 分析科学学报, 2016,32(4):445-450.
QIN Ludan, LI Mingzhe, LI Guangli, et al. Preparation and evaluation of flexible silver-silver chloride EEG electrodes[J]. Journal of Analytical Science, 2016,32(4):445-450.
[2] REINEL C, PEREZ J, ANDRADE-C H. Electrical performance of PEDOT: PSS-based textile electrodes for wearable ECG monitoring: a comparative study[J]. Biomedical Engineering Online, 2018,17(1):1-38.
doi: 10.1186/s12938-017-0432-x pmid: 29310661
[3] HOFFMANN K P, RUFF R. Flexible dry surface-electrodes for ECG long-term monitoring [C]//Conference proceedings: annual international canference of the IEEE engineering in medicine and biology society. St Ingbert, Germany, 2007:5740-5742.
[4] LIU Z, LIU XX. Progress on fabric electrodes used in biological signal acquisition[J]. Journal of Minerals and Materials Characterization and Engineering, 2015(3):204-214.
[5] 祝钦, 刘晓霞, 俞侃, 等. 一种石墨烯银复合织物电极的制备与研究[J]. 棉纺织技术, 2017,45(6):21-24.
ZHU Qin, LIU Xiaoxia, YU Kan, et al. Preparation and study of a graphene silver composite fabric elec-trode[J]. Cotton Textile Technology, 2017,45(6):21-24.
[6] 高保东, 张岩, 唐文超, 等. 丝素基伤口敷料研究进展[J]. 纺织学报, 2016,37(7):162-168.
GAO Baodong, ZHANG Yan, TANG Wenchao, et al. Research progress of wound dressing based on silk fibroin[J]. Journal of Textile Research, 2016,37(7):162-168.
[7] MONTAZER M, NIA Z, KOMEILY. Conductive nylon fabric through in situ synjournal of nano-silver: preparation and characterization[J]. Materials Science & Engineering: C, 2015(6):341-347.
[8] 刘振, 刘晓霞. 基于心电信号采集与处理的刺绣型织物电极研究[J]. 材料导报, 2016,30(S2):92-97.
LIU Zhen, LIU Xiaoxia. An investigation of embroidery fabric electrode based on ECG signal acquiring and processing technique[J]. Materials Review, 2016,30(S2):92-97.
[9] MAROZAS V, PETRENAS A, DAUKANTAS S, et al. A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings[J]. Journal of Electrocardiology, 2011,44(2):189
doi: 10.1016/j.jelectrocard.2010.12.004
[10] KRASTEVA V T, PAPAZOV S P. Estimation of current density distribution under electrodes for external defibrillation[J]. BioMedical Engineering OnLine, 2003(1):1.
pmid: 28086973
[11] 殷延雄, 于澍, 李云平, 等. 炭基复合材料生物相容性研究[J]. 生物医学工程学杂志, 2018,35(5):740-748.
pmid: 30370713
YIN Yanxiong, YU Wei, LI Yunping, et al. Study on biocompatibility of carbon-based composites[J]. Journal of Biomedical Engineering, 2018,35(5):740-748.
doi: 10.7507/1001-5515.201708014 pmid: 30370713
[12] 许鹏俊. 用于体表心电监测的纺织结构电极与皮肤之间机械作用分析及动态噪音研究[D]. 上海:东华大学, 2012:52-54.
XU Pengjun. Mechanical analysis and dynamic noise between textile structure electrodes and skin for surface ECG monitoring[D]. Shanghai: Donghua University, 2012:52-54.
[13] KANNAIAN T, NEELAVENI R, THILAGAVATHI G, et al. Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals[J]. Journal of Industrial Textile, 2012,42(3):303-318
doi: 10.1177/1528083712438069
[14] 易晓霖. 可穿戴心电信号质量综合评估及节律分析系统[D]. 上海:东华大学, 2012:15-19.
YI Xiaolin. Wearable ECG signal quality comprehensive evaluation and rhythm analysis system[D]. Shanghai: Donghua University, 2012:15-19.
[15] MAJUMDER S, CHEN L, MARINOV O, et al. Noncontact wearable wireless ECG systems for long-term monitoring[J]. IEEE Reviews in Biomedical Engineering, 2018(11):306-321.
[16] XIAO X L, PIRBHULAL S, DONG K, et al. Performance evaluation of plain weave and honeycomb weave electrodes for human ECG monitoring[J]. Journal of Sensors, 2017(5):432-445.
[17] WANG Y S, DOLESCHEL S, RALF W, et al. A wearable wireless ECG monitoring system with dynamic transmission power control for long-term homecare[J]. Journal of Medical Systems, 2015,39:35.
doi: 10.1007/s10916-015-0223-5 pmid: 25682358
[1] YIN Juhui, GUO Jing, WANG Yan, CAO Zheng, GUAN Fucheng, LIU Shuxing. Preparation and properties of sodium alginate / krill protein scaffold materials [J]. Journal of Textile Research, 2021, 42(02): 53-59.
[2] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[3] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester/sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[4] DONG Ke, ZHANG Ling, FAN Jiaxuan, LI Mengjie, MEI Lin, XIAO Xueliang. Action mechanism of wearing pressure on electrocardiogram monitoring of woven fabric electrodes [J]. Journal of Textile Research, 2019, 40(09): 75-82.
[5] LIN Yongjia, YANG Dongchao, ZHANG Peihua, GU Yan. Preparation and properties of regenerated silk fibroin/acellular dermal matrix blended nanofiber membrane [J]. Journal of Textile Research, 2019, 40(07): 13-18.
[6] . Structure and properties of polylactic acid-polycaprolactone/silk fibroin composite nanofibrous scaffolds [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 8-13.
[7] . Surface modification of PET by acrylic acid and collagen [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 152-0.
[8] . Current research of implantation artificial hair and biocompatibilit of polypyrrole [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(5): 146-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!