Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 96-101.doi: 10.13475/j.fzxb.20190105006

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and electrochemical properties of MnO2/graphene/cotton fabric composite electrode

LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2019-01-23 Revised:2019-06-05 Online:2020-01-15 Published:2020-01-14
  • Contact: XING Tieling E-mail:xingtieling@suda.edu.cn

Abstract:

In order to enhance the electrochemical properties of flexible fabric electrodes, high concentration graphene oxide hydrosol was prepared by improved Hummers method, the graphene oxide was then coated onto cotton fabric through an environmentally friendly ″dry-coating″ method, and graphene/cotton fabric was prepared by subsequent ″two-step reduction″ method of chemical-microwave reduction. Then the MnO2/graphene/cotton fabric composite electrode materials were prepared through electrochemical deposition of MnO2 on graphene/cotton fabric material. The morphology and structure of composite electrode materials were characterized by scanning electron microscopy, X-ray diffraction, and infrared spectrum. The results show that the specific capacitance of composite electrode material reaches 490 F/g at current density of 0.25 A/g. After 1 000 capacitance discharges, the capacitance remains at 95.5% and the energy density reaches 17.01 W·h/kg.

Key words: graphene, MnO2, cotton fabric, composite material, electrode, electrochemical property

CLC Number: 

  • TS190.2

Fig.1

SEM images of different fabrics magnified by different multiples. (a) Pristine cotton fabric at 100 ratios; (b) Pristine cotton fabric at 1 000 ratios; (c) GO-coated cotton fabric at 1 000 ratios;(d) GO-coated cotton fabric at 10 000 ratios;(e) MnO2/GO/cotton fabric at 1 000 ratios; (f) MnO2/GO/cotton fabric at 10 000 ratios;(g) MnO2/GO/cotton fabric at 50 000 ratios;(h) MnO2/GO/cotton fabric at 100 000 ratios"

Fig.2

XRD curves of GO/cotton fabric and MnO2/GO/cotton fabric"

Fig.3

FT-IR spectra of GO/cotton fabric and MnO2/GO/cotton fabric"

Fig.4

CV curves of MnO2/GO/cotton fabric at different scan rates. (a) Cyclic voltammetry curve;(b) Galvanostatic charge-discharge curves at different current densities; (c) Calculated areal capacitance curve of electrode according to the GCD curve; (d) Nyquist plots; (e) Cyclic stability at current density of 0.25 A/g; (f) Ragone plot relating energy density to power density"

[1] 巩继贤. 智能服装的现状及展望[J]. 现代纺织技术, 2004,12(1):47-49.
GONG Jixian. Present situation and prospect of intelligent clothing[J]. Advanced Textile Technology, 2004,12(1):47-49.
[2] POST E R, ORTH M, RUSSO P R, et al. E-broidery: design and fabrication of textile-based computing[J]. Ibm Systems Journal, 2000,39(3/4):840-860.
[3] LI Z, ZHANG L, TAN X, et al. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors[J]. Advanced Energy Materials, 2012,2(4):431-437.
[4] WEN Z B, QU Q T, GAO Q, et al. An activated carbon with high capacitance from carbonization of a resorcinol-formaldehyde resin[J]. Electrochemistry Communications, 2009,11(3):715-718.
[5] PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009,4(4):217.
doi: 10.1038/nnano.2009.58 pmid: 19350030
[6] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005,438(7065):197-200.
doi: 10.1038/nature04233 pmid: 16281030
[7] CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010,48(4):1146-1152.
doi: 10.1016/j.carbon.2009.11.037
[8] 杨玉娟. 纳米二氧化锰的制备及其电容性能研究[D]. 天津:天津大学, 2007:5-8.
YANG Yujuan. Preparation and capacitance properties of nano manganese dioxide[D]. Tianjin: Tianjin University, 2007:5-8.
[9] BEYENE N W, KOTZIAN P, SCHACHL K, et al. (Bio)sensors based on manganese dioxide-modified carbon substrates: retrospections, further improvements and applications[J]. Talanta, 2004,64(5):1151-115912.
doi: 10.1016/j.talanta.2004.03.068
[10] PRASAD K R, MIURA N. Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors[J]. Journal of Power Sources, 2004,135(1):354-360.
doi: 10.1016/j.jpowsour.2004.04.005
[11] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved Synjournal of Graphene Oxide[J]. ACS NANO, 2010,4(8):4806-4814.
doi: 10.1021/nn1006368 pmid: 20731455
[12] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008,7(11):845-854.
doi: 10.1038/nmat2297 pmid: 18956000
[13] ZHAO L, FAN L Z, ZHOU M Q, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J]. Advanced Materials, 2010,22(45):5202-5206.
doi: 10.1002/adma.201002647 pmid: 20862714
[14] HSIEH C T, CHEN W Y, CHENG Y S. Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites[J]. Electrochimica Acta, 2010,55(19):5294-5300.
doi: 10.1016/j.electacta.2010.04.085
[15] 王文亮, 李东升, 王继武, 等. 一种新的制备纳米γ-MnO2的方法: 超声辐射氧化还原法[J]. 化学学报, 2004,62(16):1557-1560.
WANG Wenliang, LI Dongsheng, WANG Jiwu, et al. A new method for preparation of nano-gamma-MnO2 by ultrasonic radiation oxidation-reduction[J]. Journal of Chemistry, 2004,62(16):1557-1560.
[1] LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Optimization design of electrode plate based on electrostatic adsorption and transfer used for garment fabric [J]. Journal of Textile Research, 2021, 42(02): 185-192.
[2] LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147.
[3] CAI Lu, KANG Jialiang, LÜ Cun, HE Xuemei. Preparation of self-crosslinking fluorinated polyacrylate emulsion and its application properties [J]. Journal of Textile Research, 2021, 42(02): 161-167.
[4] HU Jing, ZHANG Kaiwei, LI Ranran, LIN Jinyou, LIU Yuqing. Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites [J]. Journal of Textile Research, 2021, 42(02): 47-52.
[5] HOU Wenshuang, MIN Jie, JI Feng, ZHANG Jianxiang, SU Meng, HE Ruixian. Influence of fabric tightness and anti-crease finishing on wrinkle recovery of pure cotton woven fabrics [J]. Journal of Textile Research, 2021, 42(01): 118-124.
[6] ZENG Fanxin, QIN Zongyi, SHEN Yueying, CHEN Yuanyu, HU Shuo. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology [J]. Journal of Textile Research, 2021, 42(01): 103-111.
[7] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[8] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[9] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[10] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[11] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[12] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[13] WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole/cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106.
[14] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[15] HAN Jiarui, HUANG Zhenzhen, WANG Jiajun, YIN Hao, GAO Jing, LAO Jihong, WANG Lu. Preparation and cytotoxicity analysis of flexible metal electrodes for medical dressings [J]. Journal of Textile Research, 2020, 41(09): 174-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!