Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 32-38.doi: 10.13475/j.fzxb.20190105607

• Fiber Materials • Previous Articles     Next Articles

Structural characteristics and sound absorption properties of waste feather

LÜ Lihua, LIU Yingjie, GUO Jing, WANG Ying, BI Jihong, YE Fang()   

  1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2019-01-28 Revised:2019-08-13 Online:2020-01-15 Published:2020-01-14
  • Contact: YE Fang E-mail:yidi999@163.com

Abstract:

Aiming at the reuse of waste feathers, this paper reports a study on the macromolecular structure, aggregated structure and morphological structure of feathers by means of multifunctional fiber projector, scanning electron microscope, Fourier transform infrared spectrometer and X-ray diffractometer, and on the findings in the relationship between feather structure and sound absorption performance. Sound absorption properties of waste feathers and other fiber aggregates used for sound absorption were tested and compared in terms of acoustic impedance. The results show that the order (from high to low) of sound absorption efficiency for the several fiber aggregates were as follows: waste feather,kapok fiber,wool,hemp fiber,and polyester fiber. The sound absorption efficiency of the waste feather increases as the density of the fiber aggregates gets higher throughout the test frequency range, and the sound absorption frequency corresponding to the maximum sound absorption coefficient of the fiber aggregates gradually decreases with the increase of the density of the fiber aggregates. Waste feather fiber demonstrates excellent sound absorption performance and has good application potential for sound absorption.

Key words: waste feather, structure characteristics, fiber aggregates, sound absorption property, sound absorption mechanism

CLC Number: 

  • TS102.9

Fig.1

Infrared spectrogram of waste feather fibers"

Fig.2

Space configuration of beta-fold. (a) Macromolecule model diagram; (b) Model diagram of ball stick"

Fig.3

Peptide plane diagram"

Fig.4

X-ray diffraction pattern of waste feathers"

Fig.5

Structure of feathers"

Fig.6

Waste feather fiber under fiber fineness projection(×500)"

Fig.7

Scanning electron microscopy of morphology and structure of waste feather fibers. (a) Dendritic structure of feathers(×50); (b) Branchlets of feathers(×500);(c) Velvet twigs(×1 000); (d) Bone node(×2 000)"

Fig.8

Transverse and longitudinal schematic diagram of waste father branch fibers. (a) Transverse sectional view(×50); (b) Longitudinal section view(×100)"

Fig.9

Relationship between fiber types and sound absorption properties"

Tab.1

Related parameters of fibers to be measured"

纤维种类 纤维密度/(g·cm-3) 纤维体积分数/%
羊毛 1.32 2 895
大麻 1.5 2 547
涤纶 1.38 2 769
羽毛 1.14 3 352
木棉 0.29 13 178

Fig.10

Effect of waste feather fiber assembly volume density on sound absorption properties"

[1] 丁立威. 禽类羽毛的采集与加工方法[J]. 科学种养, 2013(3):57.
DING Liwei. Method for collecting and processing poultry feathers[J]. Scientific Breeding, 2013(3):57.
[2] 杨崇岭, 赵耀明, 刘立进. 天然纺织材料:羽毛纤维的形态结构[J]. 纺织导报, 2005 ( 3):56-59.
YANG Chongling, ZHAO Yaoming, LIU Lijin. A natural textile material: the morphological structure of feather fiber[J]. China Textile Leader, 2005(3):56-59.
[3] 陈常栋, 付立新. 生物废弃物羽毛的资源化利用研究进展[J]. 黑龙江农业科学, 2012(1):144-147.
CHEN Changdong, FU Lixin. Research progress on the use of the living waste feather[J]. Heilongjiang Agricultural Sciences, 2012(1):144-147.
[4] CHEN K, LIU Q P, LIAO G G, et al. The sound suppression characteristics of wing feather of owl[J]. Journal of Bionic Engineering, 2012,9(2):192-199.
doi: 10.1016/S1672-6529(11)60109-1
[5] BSSA J, SOUZA J, LOPES J B, et al. Characterization of thermal and acoustic insulation of chicken feather reinforced composites[J]. Procedia Engineering, 2017,200:472-479.
doi: 10.1016/j.proeng.2017.07.066
[6] HUDA S, YANG Y. Feather fiber reinforced light-weight composites with good acoustic properties[J]. Journal of Polymers and the Environment, 2009,17(2):131-142.
doi: 10.1007/s10924-009-0130-2
[7] YANG Y, REDDY N. Utilizing discarded plastic bags as matrix material for composites reinforced with chicken feathers[J]. Journal of Applied Polymer Science, 2013,130(1):307-312.
doi: 10.1002/app.39173
[8] KUSNO A, TOYODA M, SAKAGAMI K, et al. Chicken feather: an alternative of acoustical mater-ials [C]//SYAMIR A S A, MAHDI A, CARLOS R S. 24th international congress on sound and vibration. London: International Institute of Acoustics and Vibration, 2017: 23-27.
[9] 杨树, 于伟东, 潘宁. 非织造布的孔洞分形维数对其吸声性能的影响[J]. 纺织学报, 2010,31(12):28-32.
YANG Shu, YU Weidong, PAN Ning. Effect of nonwovens pore fractal dimensions on their acoustic absorption behaviors[J]. Journal of Textile Research, 2010,31(12):28-32.
[10] 杨树. 纤维集合体的结构特征及其吸声性能研究[D]. 上海: 东华大学, 2011: 19-34.
YANG Shu. Structural characteristics and sound absorption properties of fiber aggregates[D]. Shanghai: Donghua University, 2011: 19-34.
[11] XU H, YANG Y. Controlled de-cross-linking and disentanglement of feather keratin for fiber preparation via a novel process[J]. Acs Sustainable Chemistry & Engineering, 2015,2(6):1404-1410.
[12] 赵全芳. 鸟类羽毛疏水、亲水性原因探析[J]. 新乡教育学院学报, 2005,18(2):121-122.
ZHAO Quanfang. Reasons for hydrophobicity and hydrophilicity of bird feathers[J]. Journal of Xinxiang Education College, 2005,18(2):121-122.
[13] 郭颖杰, 佟金. 角蛋白材料结构与力学特性研究进展[J]. 农业工程学报, 2004,20(3):266-270.
GUO Yingjie, TONG Jin. Structures and mechanical properties of keratin materials[J]. Transactions of the CSAE, 2004,20(3):266-270.
[14] 胡梦岩. 含羽毛纤维汽车空气滤纸的研制[D]. 天津: 天津科技大学, 2015: 10.
HU Mengyan. Development of automotive air filter paper containing feather fiber[D]. Tianjin: Tianjin University of Science and Technology, 2015: 10.
[15] 杨明, 王婷, 葛曷一. 纤维吸声材料的研究进展[J]. 化工新型材料, 2018,46(6):5-8.
YANG Ming, WANG Ting, GE Heyi. Development of fiber sound absorption material[J]. New Chemical Materials, 2018,46(6):5-8.
[16] 杨瑾儒, 张斌, 王璐, 等. 天然染料HM在蛋白质纤维上的染色性能[J]. 毛纺科技, 2013,41(4):37-40.
YANG Jinru, ZHANG Bin, WANG Lu, et al. Dyeing properties of protein fibers dyed with natural dyestuff HM[J]. Wool Textile Journal, 2013,41(4):37-40.
[17] 郭雅琳, 赵明, 黄故, 等. 亚麻纤维的结构性能对染色性能的影响[J]. 大连工业学院学报, 2001,20(1):67-69.
GUO Yalin, ZHAO Ming, HUANG Gu, et al. Effect of microstructure of flax on its dyeability[J]. Journal of Dalian Institute of Light Industry, 2001,20(1):67-69.
[18] 阿里漫. 棉纤维微观结构及与纤维性能的关系[J]. 中国纤检, 2010(13):80-82.
A Liman. The relationship between cotton fiber of the microstructure and fiber properties[J]. China Fiber Inspection, 2010(13):80-82.
[19] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 147-148.
YU Weidong. Textile materials science[M]. Beijing: China Textile & Apparel Press, 2006: 147-148.
[20] 赵耀明, 杨崇岭, 蔡婷, 等. 羽毛纤维的结构、性能及应用[J]. 针织工业, 2007(2):20-23.
ZHAO Yaoming, YANG Chongling, CAI Ting, et al. Structure, properties and application of feather fiber[J]. Knitting Industries, 2007(2):20-23.
[21] 向海帆, 赵宁, 徐坚. 聚合物纤维类吸声材料研究进展[J]. 高分子通报, 2011(5):1-9.
XIANG Haifan, ZHAO Ning, XU Jian. Recent progress in sound absorption materials based on polymer fibers[J]. Chinese Polymer Bulletin, 2011(5):1-9.
[22] 梁李斯. 闭孔泡沫铝材料的声学性能研究及应用[J]. 沈阳:东北大学, 2008: 25-35.
LIANG Lisi. Study and application of acoustic properties of closed cell aluminum foam[J]. Shenyang: Northeastern University, 2008: 25-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!