Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 171-175.doi: 10.13475/j.fzxb.20190201406

• Academic Salon Column for New Insight of Textile Science and Technology: Technology on Textiles for Safety and Protection • Previous Articles     Next Articles

Preparation of flexible puncture-proof polyester/SiC and puncture-proof property

WANG Xinhou1,2(), ZHANG Linmei1,2, SUN Xiaoxia1,2   

  1. 1. College of Textile, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2019-02-14 Revised:2019-03-05 Online:2019-06-15 Published:2019-06-25

Abstract:

Due to the high price and poor flexibility of the puncture-proof clothing, it is hard to be popularized in neither military nor civilian field. In this study, a new kind of puncture-proof composite materials (FPPCM) with improved flexibility and low cost was fabricated by coating different sizes of silicon carbide (SiC) particles onto the polyester woven fabric. Through single coating method or double coating method, the obtained composite materials were investigated by scanning electron microscope observation and multilayer puncture-proof dynamic puncture performance test. The results show that the best puncture-proof property of the FPPCM was obtained using 180 μm SiC particles. The influence of the coating method was studied as well. The results show that the FPPCM fabricated by single layer-double sides coating method is better in stab-resistant property than that fabricated by double layer-single side coating method. Moreover, the dissipative energy absorption model of the FPPCM with six layers by single layer-double sides coating method was analyzed. It is found that there are two main energy dissipation models for the FPPCM fabricated by single side-double layer coating method.

Key words: silicon carbide particle, polyester, puncture-proof property, composite materials

CLC Number: 

  • TS941.731

Fig.1

Scheme of SiC particle coating method"

Fig.2

Dynamic testing instrument. (a) Electronic power machine; (b) Standard test tool"

Tab.1

Results of dynamic puncture testing"

样品织物 厚度/
mm
面密度/
(g·m-2)
穿刺层数
涤纶/SiC(250 μm) 1.273 670 27层未穿透
涤纶/SiC(180 μm) 1.076 670 26层未穿透
涤纶/SiC(150 μm) 0.921 670 27层穿透

Fig.3

Mirco-morphology of first layer with different particle sizes after dynamic puncture (×6)"

Tab.2

Specification for double coated composite materials"

编号 样品织物 厚度/
mm
面密度/
(g·m-2)
刺破强
力/N
1# 150 μm SSDC 1.259 970 115.092
2# 150 μm DSSC 2.568 970 104.775
3# 180 μm SSDC 1.596 970 141.619
4# 180 μm DSSC 2.406 970 119.109
5# 250 μm SSDC 1.794 970 125.676
6# 250 μm DSSC 2.509 970 111.519

Fig.4

Result of dynamic puncture strength"

Fig.5

Fracture morphology of first layer of composites with different particle size(×100)"

Fig.6

Fracture morphology of sixth layer for composites with different particle size(×100)"

Fig.7

Incision morphology of SSDC composites. (a) First layer; (b) Third layer; (c) Sixth layer"

[1] CHEN X G, ZHU F Y, WELLS G. An analytical model for ballistic impact on textile based body armour[J]. Composites Part B: Engineering, 2013,45(1):1508-1514.
[2] FELI S, POUR M H N. An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact[J]. Composites Part B-Engineering, 2012,43(5):2439-2447.
[3] SCOTT R A. Textiles for Protection [M]. Cambridge: Woodhead Publishing, 2005: 1-22.
[4] HORSFALL I. Stab resistant body armour[D]. Cranfield: Cranfield University, 2000: 37-66.
[5] MESSIRY E M, ELTAHAN E. Stab resistance of triaxial woven fabrics for soft body armor[J]. Journal of Industrial Textiles, 2016,45(5):1062-1082.
[6] 顾肇文. 柔性复合防刺服机理研究[J]. 纺织学报, 2006,27(8):80-84.
GU Zhaowen. Sudy on the mechanism of flexible composite stab-resistant clothing[J]. Journal of Textile Science, 2006,27(8):80-84.
[7] 王颖, 徐伯俊, 徐耀林. 超高分子量聚乙烯织物的防刺穿性[J]. 上海纺织科技, 2012,40(2):50-51.
WANG Ying, XU Bojun, XU Yaolin. The stabbing-resistance of Ultrahigh molecular weight polye-thylene[J]. Shanghai Textile Science and Technology, 2012,40(2):50-51.
[8] ZIELINSKA D, DELCZYK-OLEJNICZAK B, WIERZBICKI L, et al. Investigation of the effect of para-aramid fabric impregnation with shear thickening fluid on quasi-static stab resistance[J]. Textile Research Journal, 2014,84(15):1569-1577.
[9] LEE Y S, WETZEL E D, WAGNER N J. The ballistic impact characteristics of kevlar woven fabrics impregnated with a colloidal shear thickening fluid[J]. Journal of Materials Science, 2003,38(13):2825-2833.
[10] HASSIM N, AHMAD M R, AHMAD W Y W, et al. Puncture resistance of natural rubber latex unidirectional coated fabrics[J]. Journal of Industrial Textiles, 2012,42(2):118-311.
[11] 方心灵, 张艳朋. 树脂对芳纶无纬布防弹防刺性能的影响[J]. 高科技纤维与应用, 2009,34(3):21-23.
FANG Xinling, ZHANG Yanpeng. Effect of resin on bullet-proof and stab-resistant properties of kevlar UD cloth[J]. Hi-Tech Fiber & Application, 2009,34(3):21-23.
[12] JR J B M, WETZEL E D, HOSUR M V, et al. Stab and puncture characterization of thermoplastic-impregnated aramid fabrics[J]. International Journal of Impact Engineering, 2009,36(9):1095-1105.
[13] 晏义伍, 曹海琳, 赵金华. 纳米混杂Kevlar/Surlyn复合材料的制备与防刺性能研究[J]. 中国个体防护装备, 2012, (3):5-9.
YAN Yiwu, CAO Hailin, ZHAO Jinhua. Preparation of nano hybrid Kevlar /Surlyn composites and study on the stab-resistance[J]. China Personal Protective Equipment, 2012(3):5-9.
[14] LEVINSKY A A, SAPOZHNIKOV S B, GRASS T S. Development of knife- and bullet-impact-resistant composite structures[J]. Mechanics of Composite Materials, 2012,48(4):405-414.
[15] 张政, 刘晓艳, 于伟东. 涂层防刺织物的制备及其防刺机制[J]. 纺织学报, 2018,39(3):108-113,119.
ZHANG Zheng, LIU Xiaoyan, YU Weidong. Preparation and stab-resistant mechanism of coated stab-resistant fabric[J]. Journal of Textile Research, 2018,39(3):108-113,119.
[1] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[2] CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6.
[3] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[4] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[5] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel / polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[6] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[7] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester / cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[8] LIU Guojin, HAN Pengshuai, CHAI Liqin, WU Yu, LI Hui, GAO Yafang, ZHOU Lan. Preparation and stability of self-crosslinking P(St-NMA) photonic crystals with structural colors on polyester fabrics [J]. Journal of Textile Research, 2020, 41(05): 99-104.
[9] JI Hong, ZHANG Yang, CHEN Kang, SONG Minggen, JIANG Quan, FAN Yonggui, ZHANG Yumei, WANG Huaping. Developing black high-tenacity polyester yarns based on dynamic characteristics [J]. Journal of Textile Research, 2020, 41(04): 1-8.
[10] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole / silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[11] LIN Jiameng, WAN Ailan, MIAO Xuhong. Preparation and properties of polypyrrole / silver conductive polyester fabrics [J]. Journal of Textile Research, 2020, 41(03): 113-117.
[12] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[13] XING Dandan, WANG Ni, LIU Huyi, GAN Xuehui, SHI Meiwu. Characterization on distribution of TiO2 particles in opaque polyester and dull nylon filaments [J]. Journal of Textile Research, 2020, 41(02): 33-38.
[14] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene / polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[15] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!