Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (12): 9-15.doi: 10.13475/j.fzxb.20190202608

• Fiber Materials • Previous Articles     Next Articles

Chemical stability and corrosion degradation of polyarylester fiber

JIANG Zhaohui1,2,3, JIN Mengtian4, GUO Zengge1(), JIA Zhao1, WANG Qicai1, JIN Jian4,5   

  1. 1. Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, Shandong 255000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang312000, China
    3. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
    4. State Key Laboratory of Biobased Fiber Manufacture Technology, China Textile Academy, Beijing 100025, China
    5. Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2019-02-18 Revised:2019-09-20 Online:2019-12-15 Published:2019-12-18
  • Contact: GUO Zengge E-mail:guozengge@sdut.edu.cn

Abstract:

In order to investigate the resistance of polyacrylester fiber to high damp heat and strong corrosion, the fibers were treated by strong acid, alkali and oxidant, and then the morphological structure, aggregation structure and macromolecular chain structure of the fibers were studied. The results show that the surfaces of fibers treated with H2SO4 show no significantly change at room temperature and 60 ℃, while only a few grooves appear in the surface of fibers treated with HNO3. However, after treatment by KMnO4, the transverse grooves of the fibers increase and the longitudinal microcracks appear. Especially after treatment by NaOH, the surface of the fibers changes from grooves to pits and even show a corrosion fracture state. Acid and KMnO4 don't significantly destroy the ordered structure of the crystalline region, while NaOH solution reduces the regularity of the crystalline region. The breakage of —CH bond on the benzene ring of macromolecular chains occurs after treatment by H2SO4, HNO3, NaOH and KMnO4, and eventually leads to degradation of polyarylester fibers and reduction of residual ratio.

Key words: polyarylester fiber, chemical stability, aggregation structure, high performance fiber

CLC Number: 

  • TQ317.2

Fig.1

OM images of polyarylester fibers (×100). (a) Longitudinal direction; (b) Cross-section"

Tab.1

Mechanical properties of polyarylester and PPTA fibers"

纤维名称 断裂强
力/cN
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
初始模量/
(cN·tex-1)
断裂功/
mJ
聚芳酯纤维 234.46 15.83 6.61 336.43 0.77
PPTA纤维 48.14 15.32 5.30 314.35 0.13

Fig.2

OM images of polyarylester fibers after treated by acid solutions at room temperature (×100). (a) Untreated; (b) H2SO4(6 h); (c) H2SO4(24 h); (d) HNO3(6 h); (e) HNO3(24 h)"

Fig.3

OM images of polyarylester fibers after treatment by acid solution at 60 ℃ (×100). (a) Untreated; (b) H2SO4(12 h); (c) HNO3(12 h)"

Fig.4

SEM images of polyarylester fibers after treatment by acid solution at 60 ℃(×5 000). (a) Untreated; (b) H2SO4 (12 h); (c) HNO3(12 h)"

Fig.5

OM images of polyarylester fibers after treatment by KMnO4 solution(×100). (a) Untreated; (b) Room temperature(12 h); (c) Room temperature(18 h); (d) 60 ℃(4 h); (e) 60 ℃(6 h); (f) 60 ℃(12 h)"

Fig.6

OM images of polyarylester fibers after treatment by NaOH solution(×100). (a) Untreated (b) Room temperature(6 h); (c) Room temperature(12 h); (d) Room temperature(18 h); (e) Room temperature(24 h); (f) 60 ℃(4 h); (g) 60 ℃(6 h); (h) 60 ℃(10 h); (i) 60 ℃(12 h)"

Fig.7

SEM images of polyarylester fibers after treatment by NaOH and KMnO4 solution(×5 000). (a) Untreated; (b) KMnO4 solution; (c) NaOH solution"

Fig.8

Diameter curves of polyarylester fibers after chemical treatment. (a) Room temperature; (b) 60 ℃"

Fig.9

DSC curves of polyarylester fibers after chemical treatment"

Fig.10

FT-IR curves of polyarylester fibers after chemical treatment"

Fig.11

TG (a) and DTG (b) curves of polyarylester fibers"

[1] 杜以军, 蒋金华, 陈南梁. Vectran® 纤维的耐酸碱性[J]. 玻璃钢/复合材料, 2014(3):27-31.
DU Yijun, JIANG Jinhua, CHEN Nanliang. Resistance to acid and alkali of Vectran® fiber[J]. Fiber Reinforced Plastics/Composites, 2014(3):27-31.
[2] MENCZEL J D, COLLINS G L, SAW K. Thermal analysis of Vectran® fibers and films[J]. Journal of Thermal Analysis, 1997,49:201-208.
[3] XIA X, WANG H F, HUANG F L, et al. Surface characterization of aromatic thermotropic liquid crystalline fiber deposited by nanostructured silver[J]. Fibers and Polymers, 2010,11(6):813-818.
[4] 潘巧玲, 杜以军, 蒋金华, 等. 聚芳酯织物的光老化性能[J]. 纺织学报, 2014,35(7):53-56.
PAN Qiaoling, DU Yijun, JIANG Jinhua, et al. Photoaging properties of Vectran® fabric[J]. Journal of Textile Research, 2014,35(7):53-56.
[5] 谭惠丰, 刘羽熙, 刘宇艳, 等. 临近空间飞艇蒙皮材料研究进展和需求分析[J]. 复合材料学报, 2012,29(6):1-8.
TAN Huifeng, LIU Yuxi, LIU Yuyan, et al. Research progress and requirement analysis of envelope materials for near space arship[J]. Acta Materiae Compositae Sinica, 2012,29(6):1-8.
[6] 庄园园. 热致性液晶聚芳酯纤维的制备与表征[D]. 上海:东华大学, 2009: 23-25.
ZHUANG Yuanyuan. The preparation and properties of thermotropic liquid crystal polyarylate fiber[D]. Shanghai: Donghua University, 2009: 23-25.
[7] 甘海啸. 液晶聚芳酯纤维制备与性能研究[D]. 上海:东华大学, 2012: 6-8.
GAN Haixiao. The preparation and properties of liquid crystal polyarylate fiber[D]. Shanghai: Donghua University, 2012: 6-8.
[8] 施伟利. 热致性液晶聚芳酯初生纤维的热处理与表面修饰[D]. 武汉:武汉纺织大学, 2013: 2-3.
SHI Weili. The heat-treatment and surface modification of thermotropic liquid-crystal polyarylate as-spun fiber[D]. Wuhan: Wuhan Textile University, 2013: 2-3.
[9] 李伟. Vectran®纤维与绳索的蠕变与应力松弛行为研究[D]. 哈尔滨:哈尔滨工业大学, 2010: 42-45.
LI Wei. Research on creep and stress relaxation of Vectran® fiber and rope [D]. Harbin: Harbin Institute of Technology, 2010: 42-45.
[10] 杜以军, 蒋金华, 陈南梁. Vectran®纤维的耐热稳定性研究[J]. 玻璃钢/复合材料, 2014(4):23-26.
DU Yijun, JIANG Jinhua, CHEN Nanliang. Research on heat resistance of Vectran® fiber[J]. Fiber Reinforced Plastics/Composites, 2014(4):23-26.
[11] LIU Y X, LIU Y Y, TAN H F, et al. Structural evolution and degradation mechanism of Vectran® fibers upon exposure to UV-radiation[J]. Polymer Degradation and Stability, 2013,98:1744-1753.
[12] LIU Y X, LIU Y Y, ZHANG C H, et al. Hyperbranched polyester-stabilized nanotitania-coated Vectran® fibers with improved UV-blocking performance[J]. Macromolecular Materials and Engineering, 2015,300:64-69.
[13] LIU Y X, ZHANG C H, LIU Y T, et al. Accelerated ultraviolet aging study of the Vectran® fiber [J]. Journal of Applied Polymer Science, 2012,124(4):3286-3292.
[14] 覃俊, 王桦, 陈丽萍, 等. 热处理对Vectran® 纤维的结构与性能的影响 [J]. 合成纤维工业, 2017,40(1):29-32.
QIN Jun, WANG Hua, CHEN Liping, et al. Effect of heat treatment on structure and properties of Vectran® fiber [J]. China Synthetic Fiber Industry, 2017,40(1):29-32.
[15] 覃俊, 王桦, 陈丽萍, 等. 芳香族聚酯液晶芳香族聚酯液晶Vectran®纤维的性能与应用[J]. 纺织科技进展, 2017(12):1-4.
QIN Jun, WANG Hua, CHEN Liping, et al. Properties and application of aromatic polyester liquid crystalline Vectran® fiber[J]. Progress in Textile Science & Technology, 2017(12):1-4.
[16] TANKA M, MORITAKA Y. Single bumper shields based on Vectran® fiber[J]. Advances in Space Research, 2004,34(5):1076-1079.
[1] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[2] . Structure and properties of colored tussah silk fibers [J]. Journal of Textile Research, 2015, 36(04): 16-19.
[3] GAO Chunmei;MENG Yanbin;XI Danli. Study on the chemical stability of PVDF/PVC membrane [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(1): 17-21.
[4] WANG Cheng;LIN Hong;LU Yanhua;CHEN Yuyue. Aggregation structure of B.mori silk treated with chitosan nanoparticle dispersed solution [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(9): 1-3.
[5] XIE Ruijuan;LI Mingzhong;ZHU Meinan;YAN Ming. Effect of drying temperature on sericin film structure [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(7): 15-18.
[6] HU Feng-xia;ZHANG Jian;SHENG Jia-yong . Orientation structure of new silk materials [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 33-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!