Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 148-153.doi: 10.13475/j.fzxb.20190203106

• Machinery & Accessories • Previous Articles     Next Articles

Vibration damping mechanism and vibration characteristics of spindle tubes

MO Shuai1,2(), FENG Zhanyong1,2, DANG Heyu1,2, ZOU Zhenxing1,2, WANG Diwen3, ZHU Hongwei3   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
    3. Jingwei Intelligent Textile Machinery Co., Ltd., Jinzhong, Shanxi 030600, China
  • Received:2019-02-19 Revised:2019-08-11 Online:2020-03-15 Published:2020-03-27

Abstract:

In order to explore the damping mechanism of the elastic spindle tube, the spiral groove of the damping tube was assumed to be a rectangular spring in this research. The mathematical model for the bending stiffness and vibration amplitude at the bottom of the tube was established, and the influence of key parameters of the bending stiffness and vibration performance was studied using the MatLab software. The results show that when the groove width and the number of turns are increased, the bending stiffness decreases and vibration amplitude of the vibration of the elastic tube increases. With the increase of wall thickness, pitch, helix angle and elastic modulus, stiffness increases amplitude decreases. Combined with results obtained from finite element simulation and modal test, the natural frequencies of the elastic tubes are obtained, which indicates that the resonance frequency range is consistent with the spindles, and the working frequency effectively avoids the resonance frequency.

Key words: damping elastic tube, spindle, bending stiffness, bottom amplitude, natural frequency

CLC Number: 

  • TS112.2

Fig.1

Flexible tube design module"

Fig.2

Spindles interior system and vibration-damping elastic tube structure"

Fig.3

Rectangular spring (spiral groove part) analysis model"

Fig.4

Simplified model of a rectangular cross-section cylindrical coil spring"

Tab.1

Value of β1 at different Φ values (Φ≥1)"

Φ β1
1.0 0.141
1.2 0.166
1.5 0.196
2.0 0.229
2.5 0.249
3.0 0.263
4.0 0.281
6.0 0.229
8.0 0.307
10.0 0.313
0.333

Fig.5

Schematic diagram of a rectangular spring cylindrical section"

Fig.6

Schematic diagram of vibration deformation at bottom of elastic tube. (a) Force deformation;(b) Coil spring deformation;(c) Mechanical model"

Fig.7

Relationship between process parameters and bending stiffness of elastic tube. (a) Wall thickness;(b) Slot width;(c) Number of turns;(d) Pitch;(e) Helix angle;(f) Modulus of elasticity"

Fig.8

Relationship between process parameters and bottom amplitude of elastic tube. (a) Wall thickness;(b) Slot width;(c) Number of turns;(d) Pitch;(e) Helix angle;(f) Modulus of elasticity"

Tab.2

Spindles natural frequency valueHz"

类型 一阶 二阶 三阶
理论计算 50 183.33 883.3~983.3
模态测试 171.67 766.7~833.3
运转试验 33.33~50 166.7~183.3

Tab.3

Elastic tube natural frequencyHz"

阶数 仿真值 测试值
一阶 178.35 168.59
二阶 188.95 182.34
三阶 785.05 760.09
四阶 1 014.10
[1] 彭超英, 陈瑞琪, 朱均, 等. 纺纱锭子的研究和发展[J]. 纺织学报, 1995,26(6):54-55.
PENG Chaoying, CHEN Ruiqi, ZHU Jun, et al. Research and development of spinning spindles[J]. Journal of Textile Research, 1995,26(6):54-55.
[2] 吴文英, 相兴利, 蔡旭初. 锭子弹性管的刚度计算及其对动态性能的影响[J]. 东华大学学报(自然科学版), 2002,28(6):80-83.
WU Wenying, XIANG Xingli, CAI Xuchu. Calculation of stiffness of spindle elastic tube and its influence on dynamic performance[J]. Journal of Donghua University(Natural Science Edition), 2002,28(6):80-83.
[3] 王志勇, 张恒才. 锭子弹性管螺旋槽弹性的探讨[J]. 纺织器材, 2004,31(6):5-6.
WANG Zhiyong, ZHANG Hengcai. Discussion on the elasticity of spiral groove of spindle elastic tube[J]. Textile Accessories, 2004,31(6):5-6.
[4] 刘向东. 高速纺纱锭子弹性管组件的精密加工工艺及专用装备研制[D]. 上海:东华大学, 2011: 5-21.
LIU Xiangdong. Precision machining technology and special equipment for high-speed spinning spindle elastic tube assembly[D]. Shanghai: Donghua University, 2011: 5-21.
[5] 相兴利, 吴文英, 陈瑞琪. 高速锭子的改进及振动特性分析[J]. 纺织器材, 2002,29(5):7-9.
XIANG Xingli, WU Wenying, CHEN Ruiqi. Improvement of high speed spindle and analysis of vibration characteristics[J]. Textile Accessories, 2002,29(5):7-9.
[6] 梁铭, 杨建成, 刘妍. JW.D3203高速锭子有限元模态分析[J]. 天津工业大学学报, 2011,30(3):19-22.
LIANG Ming, YANG Jiancheng, LIU Yan. Finite element modal analysis of JW.D3203 high speed spindle[J]. Journal of Tianjin Polytechnic University, 2011,30(3):19-22.
[7] 郝颖, 虞爱民. 层状复合材料矩形截面圆柱螺旋弹簧自由振动特性研究[J]. 振动与冲击, 2012,31(22):105-111.
HAO Ying, YU Aimin. Study on free vibration characteristics of cylindrical coiled spring with layered composites[J]. Journal of Vibration and Shock, 2012,31(22):105-111.
[8] 吴文英, 何重辉, 相兴利, 等. 高速锭子结构的设计思路[J]. 纺织器材, 2003,30(1):16-20.
WU Wenying, HE Chonghui, XIANG Xingli, et al. Design ideas of high speed spindle structure[J]. Textile Accessories, 2003,30(1):16-20.
[9] 蒋炎坤. 基于动力学方程及几何模型的高速转子动力学特性[J]. 华中科技大学学报(自然科学版), 2006,34(10):74-76.
JIANG Yankun. Dynamic characteristics of high-speed rotor based on dynamic equation and geometric model[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2006,34(10):74-76.
[10] 何重辉. 一种复合嵌套的高速回转轴系结构设计与动力特性研究[D]. 上海:东华大学, 2000: 96-128.
HE Chonghui. Research on structural design and dynamic characteristics of high-speed rotary shafting system[D]. Shanghai: Donghua University, 2000: 96-128.
[1] MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58.
[2] DAI Ning, PENG Laihu, HU Xudong, CUI Ying, ZHONG Yaosen, WANG Yuefeng. Natural frequency characterization based on Euler-Bernoulli beam theory on knitting seamless underwear [J]. Journal of Textile Research, 2020, 41(12): 144-150.
[3] LI Xintong, GAO Zhe, GU Hongyang, CONG Honglian. Study on stiffness style of knitted suit fabrics [J]. Journal of Textile Research, 2020, 41(11): 53-58.
[4] MO Shuai, FENG Zhanyong, DANG Heyu, ZOU Zhenxing. Development and research prospect of cotton spinning spindles [J]. Journal of Textile Research, 2020, 41(06): 190-196.
[5] MO Shuai, FENG Zhanyong, TANG Wenjie, DANG Heyu, ZOU Zhenxing. Performance optimization of elastic spindle pipe based on neural network and genetic algorithm [J]. Journal of Textile Research, 2020, 41(04): 161-166.
[6] . Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves [J]. Journal of Textile Research, 2018, 39(09): 139-145.
[7] . Braiding technologies of 2-D braided carbon fiber tubular fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 64-69.
[8] . Comparative analysis of conventional and self twist jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 25-31.
[9] . influence of hollow spindler structure parameters on flow field of air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 135-140.
[10] . Modeling and influence about speed of released-yarn in braiding spindles on yarn tension [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 111-117.
[11] . Calculation on bending stiffness of woven fabrics by image processing method [J]. Journal of Textile Research, 2016, 37(3): 41-46.
[12] . Effect of fiber mechanical properties on twisting degree of self-twist yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 32-35.
[13] . Design and realization of management system of definite spindle for yarn breakage in spinning frame [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 137-141.
[14] . Effect of washing temperature on smoothness appearance of woven fabric during domestic tumble laundering [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 74-0.
[15] . Optimum design for heald frame’s structure based on APDL [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 122-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!