Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 158-164.doi: 10.13475/j.fzxb.20190204507
• Academic Salon Column for New Insight of Textile Science and Technology: Technology on Textiles for Safety and Protection • Previous Articles Next Articles
CLC Number:
[1] | CHEN X, CHAUDHRY I. Ballistic Protection[C]// SCOTT R A. Textiles for Protection. Cambridge: Woodhead Publishing Ltd, 2005: 829-832. |
[2] | CAROTHERS J P. Body armour: a historical perspective [EB/OL]. USMC CSC 1988. https://www.globalsecurity.org/military/library/report/1988/CJ2.htm. |
[3] | SCOTT R A. Military Protection[M] // SCOTT R A. Textiles for Protection, Cambridge: Woodhead Publishing Ltd, 2005: 605-606. |
[4] | NIJ Standard-0101.06, US. Department of Justice, Office of Justice Programs [EB/OL]. (2018-12-06) [2018-12-06]. https://www.ncjrs.gov/pdffiles1/nij/223054.pdf. |
[5] | Home Office Body Armour Standard 2017(UK CAST publication number: 012/17). Home Office, UK [EB/OL]. [2018-12-22]. http://pod-cast.homeoffice.gov.uk. |
[6] | CHEN X. Advanced Fibrious Composite Materials for Ballistic Protection[M]. Amsterdam: Elsevier, 2016: 4. |
[7] | YAZDI M M, SHEIKHZADEH M. Personal cooling garments: a review[J]. The Journal of the Textile Institute, 2014,105:1231-1250. |
[8] | ROYLANCE D, WANG S. Influence of fibre properties on ballistic penetration of textile panels[J]. Fibre Science and Technology, 1981,14:183-190. |
[9] | WANG Y, CHEN X, YOUNG R, et al. A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics[J]. Composite Structures, 2016(140):44-52. |
[10] | BRISCOE B J, MOTAMEDI F. The ballistic impact characteristics of aramid fabrics: the influence of interface friction[J]. Wear, 1992,158:229-247. |
[11] | SUN D, CHEN X. Plasma modification of Kevlar fabrics for ballistic applications[J]. Textile Research Journal, 2012,82:1928-1934. |
[12] | WANG Y, CHEN X, YOUNG R, et al. Finite element analysis of effect of inter-yarn friction on ballistic response of woven fabrics[J]. Composite Structures, 2016(130):8-16. |
[13] | ZENG Z, LIU X, CHEN X, et al. Surface modification of aramid fibres with graphene oxide for interface improvement in composites[J]. Applied Composite Materials, 2018,25:853-852. |
[14] | CHU Y, CHEN X, WANG Q, et al. An investigation on sol-gel treatment to aramid yarn to increase inter-yarn friction[J]. Applied Surface Science, 2014(320):710-717. |
[15] | ZHOU Y, CHEN X, WELLS G. Influence of yarn gripping on the ballistic performance of woven fabrics from ultra-high molecular weight polyethylene fibre[J]. Composites: part B, 2014,62:198-204. |
[16] | WANG N. The effect of yarn gripping on fabric ballistic performance[D]. Manchester: University of Manchester, 2017: 3-21. |
[17] | GOWER H L, CRONIN D S, PLUMTREE A. Ballistic impact of laminated composite panels[J]. International Journal of Impact Engineering, 2008,35:1000-1008. |
[18] | WANG Y, CHEN X, YOUNG R, et al. An experimental study of the effect of ply orientation on ballistic impact performance of multi-ply fabric panels[J]. Textile Research Journal, 2014,86:34-43. |
[19] | MIN S, CHU Y, CHEN X. Numerical study on mechanisms of angle-plied panels for ballistic protec-tion[J]. Materials and Design, 2016,90:896-905. |
[20] | YANG Y, CHEN X. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design[J]. Composite Structures, 2017 (164):1-9. |
[21] | CHEN X, ZHU F, WELLS G. An analytical model for ballistic impact on textile based body armour[J]. Composites Part B, 2013(45):1508-1514. |
[22] | ZHOU Y, CHEN X, WELLS G. Numerical and experimental investigations into ballistic performance of hybrid fabric panels[J]. Composites Part B, 2014(58):35-42. |
[23] | YANG Y, CHEN X. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design[J]. Composite Structures, 2017(174):233-243. |
[24] | GU B. Modelling of 3D woven fabrics for ballistic protection[C]// CHEN X. Advanced Fibrous Composite Materials for Ballistic Protection. Amsterdam: Elsevier, 2016: 145-197. |
[25] | ZENG H, YUAN Z, QIU J, et al. Finite element study on the influence of structural parameters on the ballistic performance of 3D networked fabrics[J]. Applied Composite Materials, 2018,25:891-903. |
[26] | ARORA S, MAJUMDAR A, BUTOLA B S. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics[J]. Composite Structures, 2019(210):41-48. |
[27] | XU Y, CHEN X, WANG Y, et al. Stabbing resistance of body armour panels impregnated with shear thickening fluid[J]. Composite Structures, 2017(163):465-473. |
[28] | BUESGEN A. Shell three-dimensional woven textiles[C]// CHEN X. Advances in 3D Textiles. Amsterdam: Elsevier, 2016: 79-98. |
[29] | ROEDEL C, CHEN X. Innovation and analysis of police riot helmets with continuous textile reinforcement for improved protection[J]. Journal of Information and Computing Science, 2007(2):127-136. |
[30] | MIN S, CHEN X, CHAI Y, et al. Effect of reinforcement continuity on the ballistic performance of composites reinforced with multiply plain weave fabrics[J]. Composites Part B, 2016(90):30-36. |
[31] | YANG D, CHEN X. Multi-layer pattern creation for seamless front body armour panel using angle-interlock woven fabrics[J]. Journal of Industrial Textiles, 2017(87):381-386. |
[32] | ZAHID B, CHEN X. Impact performance of single piece continuously textile-reinforced helmet shells[J]. Journal of Composite Materials, 2014,48:761-766. |
[1] | SUN Guangwu, LI Jiecong, XIN Sanfa, WANG Xinhou. Diameter prediction of melt-blown fiber based on non-Newtonian fluid constitutive equations [J]. Journal of Textile Research, 2019, 40(11): 20-25. |
|