Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 8-14.doi: 10.13475/j.fzxb.20190302507

• Fiber Materials • Previous Articles     Next Articles

Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber

ZHU Weiwei1, CAI Chong2,3, ZHANG Cong2,3, LONG Jiajie2,3, SHI Meiwu1,3,4()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215000, China
    3. National Scientific Research Base for Waterless Coloration with Supercritical Fluid, Soochow University, Suzhou, Jiangsu 215123, China
    4. Institute of Quartermaster Engineering & Technology, Institute of System Engineering, Academy of Military Science, Beijing 100010, China
  • Received:2019-03-12 Revised:2019-12-17 Online:2020-03-15 Published:2020-03-27
  • Contact: SHI Meiwu E-mail:shimeiwu@263.net.cn

Abstract:

In order to develop applications of supercritical CO2 technology in processing diacetate fibers, supercritical CO2 treatment to diacetate fibers at different temperatures was carried out. The fiber surface morphology,chemical structure, aggregation structure, thermal degradation property, thermal stability and tensile strength were investigated respectively by scanning electron microscope technology, infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and universal strength tester. The results indicate that the crystallinity of diacetate fibers decrease from 39.41% to 32.43%, 31.57% and 32.16% respectively under different treatment temperatures(80, 100, 120 ℃). When the temperature is 120 ℃ some hydrogen bonds in diacetate fibers are destroyed, and the thermal resistance and thermal stability of diacetate fibers decrease slightly, but the surface morphology and chemical structure of diacetate fibers are virtually unchanged, and tensile strength remains to be about 3.20 cN.

Key words: supercritical CO2, diacetate fiber, surface morphology, aggregation structure, thermal degradation property, thermal stability, tensile strength

CLC Number: 

  • TS195.6

Fig.1

SEM images of diacetate fibers at different treatment temperatures (×1 000)"

Fig.2

FT-IR spectra of diacetate fibers at different treatment temperatures"

Fig.3

XRD patterns of diacetate fibers at different treatment temperatures"

Fig.4

TG(a) and DTG(b) curves of diacetate fibers"

Fig.5

DSC analysis curve of diacetate fibers. (a)Heating curve for the first time; (b)Heating curve for the second time"

Tab.1

DSC data of diacetate fibers at different treatment temperatures"

处理温度/℃ 第1个峰 第2个峰 第3个峰 玻璃化转变温度/℃
温度/℃ 热焓/(J·g-1) 温度/℃ 热焓/(J·g-1) 温度/℃ 热焓/(J·g-1)
未处理样 91.46 62.724 2 204.27 2.717 9 233.35 6.807 6 194.62
80 89.02 18.266 6 201.64 2.736 2 233.22 5.275 2 195.60
100 73.61 19.074 3 202.92 2.702 3 233.17 6.249 1 196.59
120 95.91 74.741 0 201.57 2.945 5 233.32 6.077 4 194.29

Tab.2

Effect of treatment temperature on tensile strength of diacetate fibers in supercritical CO2"

处理温度/℃ 断裂强力/cN 强力变化率/%
未处理样 3.20
80 2.85 -10.94
100 3.48 8.75
120 2.90 -9.38
[1] 何建新, 唐予远, 王善元. 醋酸纤维素的结晶结构与性能[J]. 纺织学报, 2008,29(10):12-16.
HE Jianxin, TANG Yuyuan, WANG Shanyuan. Crystalline structure and thermal property of cellulose acetate[J]. Journal of Textile Research, 2008,29(10):12-16.
[2] SAYYED A J, DESHMUKH N A, PINJARI D V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell[J]. Cellulose, 2019,26(5):2913-2940.
[3] 牛建设, 蔡玉兰. 二醋酸纤维的动态力学性能[J]. 纺织学报, 2008,29(9):20-22.
NIU Jianshe, CAI Yulan. Dynamic mechanical properties of diacetate fiber[J]. Journal of Textile Research, 2008,29(9):20-22.
[4] WORKT R W. The effect of variations in degree of structural order on some physical properties of cellulose and cellulose acetate yarns[J]. Textile Research Journal, 1949,19(7):381-393.
[5] NIKITIN L N, GALLYAMOV M O, VINOKUR R A, et al. Swelling and impregnation of polystyrene using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2003,26(3):263-273.
[6] CHAMPEAU M, THOMASSIN J M, TASSAING T, et al. Drug loading of polymer implants by supercritical CO2 assisted impregnation: a review[J]. Journal of Controlled Release, 2015,209:248-259.
doi: 10.1016/j.jconrel.2015.05.002 pmid: 25953410
[7] 崔创龙. 超临界 CO2 流体中分散活性染料的上染及催化固色研究[D]. 苏州:苏州大学, 2014: 73-93.
CUI Chuanglong. Uptake and phase transfer catalytic fixation of disperse reactive dye in supercritical carbon dioxide[D]. Suzhou:Soochow University, 2014: 73-93.
[8] 钱静, 龙家杰, 蒋耀兴, 等. 超临界CO2流体处理对大豆纤维性能的影响[J]. 印染, 2011,37(11):5-8.
QIAN Jing, LONG Jiajie, JIANG Yaoxing, et al. Effects of supercritical CO2 fluid treatment on properties of soybean fiber[J]. China Dyeing & Finishing, 2011,37(11):5-8.
[9] 龙家杰, 陆同庆, 张培群, 等 .超临界 CO2 流体对涤纶纤维聚集态结构的修饰[J]. 丝绸, 2005(5):17-20.
LONG Jiajie, LU Tongqing, ZHANG Peiqun, et al. The structure modify of pet aggregation by supercritical CO2[J]. Journal of Silk, 2005 (5):17-20.
[10] LONG J J, CUI C L, WANG L, et al. Effect of treatment pressure on wool fiber in supercritical carbon dioxide fluid[J]. Journal of Cleaner Production, 2013,43:52-58.
[11] ZHENG H, ZHANG J, DU B, et al. An investigation for the performance of meta-aramid fiber blends treated in supercritical carbon dioxide fluid[J]. Fibers and Polymers, 2015,16(5):1134-1141.
[12] 冉瑞龙, 龙家杰, 徐水, 等 .超临界 CO2 流体处理对蚕丝纤维结构的影响[J]. 丝绸, 2006(5):22-25.
RAN Ruilong, LONG Jiajie, XU Shui, et al. Effect of supercritical CO2 treatment on the structure of silk[J]. Journal of Silk, 2006(5):22-25.
[13] GAAN S, MAUCLAIRE L, RUPPER P, et al. Thermal degradation of cellulose acetate in presence of bis-phosphoramidates[J]. Journal of Analytical and Applied Pyrolysis, 2011,90(1):33-41.
[14] RAMESH S, SHANTI R, MORRIS E. Plasticizing effect of 1-allyl-3-methylimidazolium chloride in cellulose acetate based polymer electrolytes[J]. Carbohydrate polymers, 2012,87(4):2624-2629.
[15] CAO Y, WU J, MENG T, et al. Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl)[J]. Carbohydrate Polymers, 2007,69(4):665-672.
[16] GUO Y, WU P. Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy[J]. Carbohydrate Polymers, 2008,74(3):509-513.
[17] 侯兵兵. 基于服用的醋酸纤维丝束理化性能及染色研究[ D]. 上海:东华大学, 2017: 14.
HOU Bingbing. Study on physic-chemical properties and dyeing of cellulose acetate tow based on weara-bility[D]. Shanghai:Donghua University, 2017: 14.
[18] TANG M M, BACON R. Carbonization of cellulose fibers:I:low temperature pyrolysis[J]. Carbon, 1964,2(3):211-220.
[19] 梅洁, 欧义芳, 陈家楠. 醋酸纤维素取代基分布与性质的关系[J]. 纤维素科学与技术, 2002(1):12-19.
MEI Jie, OU Yifang, CHEN Jia'nan.Relationship between substituent distribution and property for cellulose acetate[J]. Journal of Cellulose Science and Technology, 2002(1):12-19.
[20] SHI Y, YANG B, MIAO J B, et al. Filler network structure and crystallization behavior of polyvinylidene fluoride/graphene nanoplatelet composites using SEM, DSC, rheological, and in situ measurement approach[J]. Polymer Crystallization, 2019,2(1):e10041. DOI: 10.1002/pcr2.10041.
[1] WEN Xin, ZHANG Xuzhen, LI Yong, HUANG Wenjian, LU Chen. Study on water-initiated ring-opening polymerization technology of L-lactide [J]. Journal of Textile Research, 2020, 41(12): 21-25.
[2] LIU Xiaohan, TIAN Miao, WANG Yunyi, LI Jun. Research progress in effect of flame-retardant fabric aging on its tensile strength [J]. Journal of Textile Research, 2020, 41(11): 181-188.
[3] WANG Chunyi, WU Wei, WANG Jian, XU Hong, MAO Zhiping. Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water [J]. Journal of Textile Research, 2020, 41(09): 95-101.
[4] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[5] ZHANG Juan, ZHENG Huanda, QIAO Yan, GAO Shihui, ZHENG Laijiu. Scouring and bleaching process for flax roves using supercritical CO2 [J]. Journal of Textile Research, 2020, 41(07): 93-101.
[6] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[7] JIANG Zhaohui, JIN Mengtian, GUO Zengge, JIA Zhao, WANG Qicai, JIN Jian. Chemical stability and corrosion degradation of polyarylester fiber [J]. Journal of Textile Research, 2019, 40(12): 9-15.
[8] DU Xiaodong, LIN Fangbing, JIANG Jinhua, CHEN Nanliang, LIU Yanping. Influence of oxygen plasma modification on surface properties of polyimide fiber [J]. Journal of Textile Research, 2019, 40(09): 22-27.
[9] GUO Xinyue, YANG Zhanping, SONG Xiaomei, XU Yang. Preparation and properties of n-eicosane/cellulose diacetate phase change filter material [J]. Journal of Textile Research, 2019, 40(09): 15-21.
[10] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[11] XIANG Guodong, GAO Qingwen, DENG Qianqian, ZHANG Xuzhen, WANG Xiuhua. Preparation and performance of easy cationic dye-modified polyester by solid-phase polycondensation [J]. Journal of Textile Research, 2019, 40(04): 21-25.
[12] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[13] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[14] . Preparation and properties of novel modified polyester [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 22-26.
[15] . Preparation and properties of wet-spinning graphene fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!