Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 39-44.doi: 10.13475/j.fzxb.20190304207

• Textile Engineering • Previous Articles     Next Articles

Simulation and analysis of trajectory of fibers in a four-roller compact spinning system

QIAN Cheng, LIU Yanqing(), LIU Xinjin, XIE Chunping, SU Xuzhong   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2019-03-13 Revised:2019-11-07 Online:2020-03-15 Published:2020-03-27
  • Contact: LIU Yanqing E-mail:yqljndx@126.com

Abstract:

In order to simulate the trajectory of fibers in four-roller compact spinning, the critical components of four-roller compact spinning were measured to build a physical model. Fluent16 which can calculate the flow field was used to acquire the airflow distribution in the aggregation region. The dynamic model of fiber was established by infinitesimal method, and MatLab was used to edit the dynamic equation to simulate the trajectory of a single fiber under different conditions. The results show that the fibers at the entrance of aggregation region are compacted and output to the center. The track of single fiber is regular, but the displacement of the fiber in the intermediate micro-element period is random. The fibers hold together under the action of airflow force and friction. With the increase of the negative pressure value, the fibers hold together more tightly; but when the negative pressure is too high, the internal and external transfer of fibers is weakened, thus weakening the cohesive force among the fibers.

Key words: four-roller spinning system, compact spinning, dynamic model, movement of fibers

CLC Number: 

  • TS101.2

Fig.1

Four-roller spinning drafting system"

Fig.2

Boundary condition setting"

Fig.3

Flow speed vector illustration of compact area. (a)Inlet surface of suction sunken;(b)Profile of suction sunken"

Fig.4

Distribution of three-dimensional differential velocity in aggregation region. (a)Plan view;(b)Bottom view"

Fig.5

Force analysis of fiber element segment"

Tab.1

Calculating parameter of dynamical model"

纤维直径d/mm 0.022
空气密度ρa(25 ℃)/(kg·m-3) 1.165
纤维密度ρf/(g·cm-3) 1.54
流场修正系数k 0.2
纤维间的摩擦因数μ 0.2
空气黏度μa(25 ℃)/(m2·s-1) 16×10-6
时间间隔数 1 000
圆弧半径r/mm 18

Fig.6

Trajectories of fibers observed at different angles. (a)Fiber movement in aggregation region;(b)Fiber movement at feeding point;(c)Fiber movement of XZ axis section in aggregation region;(d)Single fiber movement"

Fig.7

Surface structure of different yarns (×100)"

Tab.2

Test result of yarn hairiness"

编号 负压值/Pa 气流速度/(m·s-1) 3 mm以下毛羽个数(200 m)
1 -2 800 68.9 10 323
2 -3 100 72.5 9 928
3 -3 400 75.9 9 625
4 -3 800 80.3 9 824

Fig.8

Trajectory of fibers in aggregation region. (a)Fiber motion in XY axis profile;(b)Fiber motion in YZ axis profile"

[1] 程隆棣, 顾肇文, 裘永清, 等. 集聚纺纱技术研究[J]. 上海纺织科技, 2005,33(2):15-17.
CHENG Longdi, GU Zhaowen, QIU Yongqing, et al. Technology research on compact spinning[J]. Shanghai Textile Science & Technology, 2005,33(2):15-17.
[2] 马晓辉, 邹小祥, 吴琼. HFJA506紧密纺加工纤维素纤维纱生产实践[J]. 江苏纺织, 2010(9):42-44.
MA Xiaohui, ZOU Xiaoxiang, WU Qiong. HFJA506 compact spinning cellulose fiber yarn production practice[J]. Jiangsu Textile, 2010 ( 9):42-44.
[3] THUM R. Suessen elite spinning system for long and short staple fibers[J]. Textile World, 2000(4):38-39.
[4] YILMAZ D, GOEKTEPEF, GOEKTEPE O, et al. Packing density of compact yarns[J]. Textile Research Journal, 2007,77(9):661-667.
[5] 邹专勇, 汪燕, 俞建勇, 等. 网格圈集聚纺纱系统三维流场表征与分析[J]. 纺织学报, 2009,30(6):24-28.
ZOU Zhuanyong, WANG Yan, YU Jianyong, et al. Characterization and analysis of three-dimensional flow field in grid-ring agglomeration spinning system[J]. Journal of Textiles Research, 2009,30(6):24-28.
[6] 傅培花, 程隆棣, 王善元. 集聚纺纱系统技术中气流速度场的数值模拟[J]. 青岛大学学报, 2005,20(4):74-79.
FU Peihua, CHENG Longdi, WANG Shanyuan. Numerical simulation of airflow velocity field in agglomeration spinning system technology[J]. Journal of Qingdao University, 2005,20(4):74-79.
[7] 杨兴, 汪军, 杨建平. 集聚纺集聚区须条的运动学分析[J]. 东华大学学报(自然科学版), 2003(5):1-4.
YANG Xing, WANG Jun, YANG Jianping. Kinematics analysis of agglomeration zone[J]. Journal of Donghua University (Natural Science Edition), 2003(5):1-4.
[8] 周水平, 汪军, 杨建平. 集聚纺集聚区须条变截面部分的力学分析[J]. 东华大学学报(自然科学版), 2005,31(2):20-24.
ZHOU Shuiping, WANG Jun, YANG Jianping. Mechanical analysis of changing section fiber band in compact field of compact spinning[J]. Journal of Donghua University (Natural Science Edition), 2005,31
[9] 竺韵德, 邹专勇, 俞建勇, 等. 气流槽聚型集聚纺纱系统三维流场的数值研究[J]. 东华大学学报(自然科学版), 2009,35(3):294-298.
ZHU Yunde, ZOU Zhuanyong, YU Jianyong, et al. Numerical study of three-dimensional flow field in the agglomeration spinning system with air channel[J]. Journal of Donghua University (Natural Science Edition), 2009,35(3):294-298.
[10] 陆世麟, 马洪才, 程隆棣. 气流槽聚型长纤维紧密集聚纺纱系统流场模拟与分析[J]. 东华大学学报(自然科学版), 2012,38(1):16-20.
LU Shilin, MA Hongcai, CHENG Longdi. Simulation and analysis of flow field of long fiber compact concentrated spinning system with air channel[J]. Journal of Donghua University (Natural Science Edition), 2012,38(1):16-20.
[1] QIAN Cheng, LIU Yanqing, LIU Xinjin, XIE Chunping, XU Bojun. Simulation and analysis of three-dimensional flow field in four-roller compact spinning system [J]. Journal of Textile Research, 2019, 40(10): 56-61.
[2] FU Ting, ZHANG Yuze, WANG Jiang, CHEN Nanliang. Core structure and condensing mechanism of compact spun yarn [J]. Journal of Textile Research, 2019, 40(02): 53-57.
[3] . Modeling and simulation of transverse motion error of guide bar shogging system of warp knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 130-137.
[4] . Structural formation mechanism of multiple condensed spun yarn and properties of knitted fabric thereof [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 26-31.
[5] . Relationship bepure cotton fabruc's wrinkle recovery angle and its organizatonal structure parameters [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 46-49.
[6] . Application of compact spinning system in silk spinning frame [J]. Journal of Textile Research, 2016, 37(4): 124-127.
[7] . Numerical simulatio on airflow field in complete condensing spinning system using finitelement method [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 29-33.
[8] . Novel complete condensing spinning system with strip groove structure [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 137-141.
[9] . Three dimensional flow field numerical simulation and analysis of compact spinning with perforated rollers [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 122-126.
[10] . Numerical simulation and analysis of three dimensional flow field of modified four-roller compact spinning system based on Fluent [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 112-120.
[11] . Dynamic analysis od shogging motion mechanism of guide bar on warp knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 121-126.
[12] FU Jiang. Analysis of three basic parameters of the false-twist compact spinning method [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(5): 38-42.
[13] GAO Jinxia;HUA Zhihong;CHENH Longdi. Factors influencing compacting effect of compact spinning with perforated rollers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(5): 112-116.
[14] LIU ShiRui;HUA Zhihong;CHENG Longdi. Twist Propagation Analysis of Compact Yarn in Compact Spinning with Pneumatic Groove [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(4): 117-120.
[15] WANG Yan;HUA Zhihong;CHENG Longdi;XUE Wenliang. Influence of processing parameters on quality of fiber compact in condensing zone of compact spinning with lattice apron [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(2): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!