Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (02): 7-12.doi: 10.13475/j.fzxb.20190404406

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of lignin/polyacrylonitrile composite fibers

SONG Le1,2,3, SHEN Lanping1(), HUANG Xianwen2, HENG Fangfang2, MA Hongbo2, OUYANG Qin2, CHEN Peng2, WANG Xuan3   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo,Zhejiang 315201, China
    3. Ningbo Key Laboratory of Advanced Textile Technology & Fashion CAD,Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang 315211, China
  • Received:2019-04-16 Revised:2019-11-23 Online:2020-02-15 Published:2020-02-21
  • Contact: SHEN Lanping E-mail:shenlanping@126.com

Abstract:

In order to reduce the preparation cost of existing polyacrylonitrile (PAN) fiber and achieve high value utilization of lignin, different proportions of lignin were used to prepare the lignin/PAN fibers employing the wet spinning process based on the understanding of viscosity of lignin/PAN blending solution, and the results from this work were used to identify the optimal spinning process. The structure and properties of the composite fibers were investigated by scanning electron microscopy, differential scanning calorimetry/thermal resynchronization analyzer, single fiber physical property analyzer, and UV-visible spectrophotometer. The results show that the lignin/PAN fiber with 35% lignin remains a uniform and dense structure, and its strength can reach 3.81 cN/dtex. After the addition of lignin, the synergistic effect of the two gives the composite fiber good thermal stability. The composite fiber has important potential application value in the fields of low cost carbon fiber and functional textile materials.

Key words: lignin/polyacrylonitrile composite fiber, wet spinning, spinnability, viscosity

CLC Number: 

  • TS102.6

Tab.1

Composition of lignin/PAN blend solutions"

样品
编号
DMSO质
量/g
木质素
质量/g
PAN溶液
质量/g
木质素相
对含量/%
PAN 11.1 0 100 0
L10 11.1 2.2 100 10
L20 11.1 5.0 100 20
L25 11.1 6.7 100 25
L30 11.1 8.6 100 30
L35 11.1 10.8 100 35
L40 11.1 13.3 100 40
L45 11.1 16.4 100 45
L50 11.1 20.0 100 50

Fig.1

Rotational viscosity of lignin/PAN blend solutions"

Fig.2

Photographs of PAN fiber and lignin/PAN composite fibers"

Fig.3

Ultraviolet absorption spectra of lignin/PAN blend solutions with different lignin contents"

Fig.4

Calibration plot of absorbance and lignin concentration at 290 nm"

Fig.5

Ultraviolet absorption spectra of composite fibers"

Fig.6

Actual content and yield of lignin in lignin/PAN composite fibers"

Fig.7

SEM images of PAN fiber and lignin/PAN composite fibers(×5 000)"

Tab.2

Basic parameters and properties of PAN fiber and lignin/PAN composite fibers"

纤维
类别
密度/
(g·cm-3)
纤维直径/
μm
线密度/
dtex
取向度/
%
拉伸强度/
(cN·dtex-1)
拉伸模量/
(cN·dtex-1)
断裂伸长率/
%
PAN 1.18 13.25 1.63 74.09 2.50 72.62 19.89
L25 1.19 13.54 1.71 88.03 3.62 94.56 11.14
L35 1.19 13.22 1.63 88.03 3.81 90.38 12.11

Fig.8

DSC curves of lignin/PAN composite fibers in nitrogen"

Fig.9

TG curves of lignin/PAN composite fibers in nitrogen"

[1] 张放台, 任国强, 俞玉芳. 聚丙烯腈纤维[M]. 北京:化学工业出版社, 2014: 1-17.
ZHANG Fangtai, REN Guoqiang, YU Yufang. Polyacrylonitrile fiber[M]. Beijing:Chemical Industry press, 2014: 1-17.
[2] 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013,25(5):838-858.
LU Yao, WEI Xianyong, ZONG Zhimin, et al. Structural research and application of lignin[J]. Chemical Progress, 2013,25(5):838-858.
[3] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al. Lignin valorization: improving lignin processing in the biorefinery[J]. Science (New York), 2014,344(6185):1246843.
[4] 蒋挺大. 木质素[M].2版. 北京:化学工业出版社, 2008: 19.
JIANG Tingda. Lignin[M]. 2nd edition. Beijing:Chemical Industry Press, 2008: 19.
[5] LIU D P, OUYANG Q, JIANG X F, et al. Thermal properties and thermal stabilization of lignosulfonate-acrylonitrile-itaconic acid terpolymer for preparation of carbon fiber[J]. Polymer Degradation & Stability, 2018,150:57-66.
[6] MALDHURE A V, CHAUDHARI A R, EKHE J D. Thermal and structural studies of polypropylene blended with esterified industrial waste lignin[J]. Journal of Thermal Analysis and Calorimetry, 2011,103(2):625-632.
[7] 林剑, 赵广杰. 木质素基碳纤维的研究进展[J]. 北京林业大学学报, 2010,32(4):293-296.
LIN Jian, ZHAO Guangjie. Research progress of wood lignin carbon fiber[J]. Journal of Beijing Forestry University, 2010,32(4):293-296.
[8] 尹江苹, 赵广杰. 木素基碳纤维的工艺研究与应用进展[J]. 木材工业, 2011,25(1):30-33.
YIN Jiangping, ZHAO Guangjie. Progress in technology research and application of lignin-based carbon fiber[J]. Wood Industry, 2011,25(1):30-33.
[9] BAKER D A, RIALS T G. Recent advances in low-cost carbon fiber manufacture from lignin[J]. Journal of Applied Polymer Science, 2013,130(2):713-728.
[10] DONG X, LU C, ZHOU P, et al. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber[J]. Rsc Advances, 2015,5(53):42259-42265.
[11] JIA Z, LU C, LIU Y, et al. Novel lignin/polyacrylonitrile composite hollow fibers prepared by wet-spinning method[J]. ACS Sustainable Chemistry & Engineering, 2016,4(5):2838-2842.
[12] JIN J, OGALE A A. Carbon fibers derived from wet-spinning of equi-component lignin/polyacrylonitrile blends[J]. Journal of Applied Polymer Science, 2018,135(8):45903.
[13] SHAN J, GUAN Y, ZHENG Q, et al. Application of urea/H2O2 activation-oxidation system in degradation of PVA and desizing of polyester/cotton fabric[J]. Journal of Applied Polymer Science, 2009,113(2):860-867.
[14] DOI M, EDWARDS S F. Dynamics of concentrated polymer systems: part 2: molecular motion under flow[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978,74:1802-1817.
[15] JIANG X F, OUYANG Q, LIU D P, et al. Preparation of low-cost carbon fiber precursors from blends of wheat straw lignin and commercial textile-grade polyacrylonitrile (PAN)[J]. Holzforschung, 2018,72(9):727-734.
[16] QIAN Y, QIU X Q, ZHU S P. Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens[J]. Green Chemistry, 2015,17(1):320-324.
[1] WANG Ying, WANG Yiting, WU Jiaqing, GUO Yafei, HAO Xinmin. Preparation of compound antistatic spinning oil for bio-based polyamide 56 and its effect on staple fiber spinnability [J]. Journal of Textile Research, 2021, 42(01): 84-89.
[2] WEN Xin, ZHANG Xuzhen, LI Yong, HUANG Wenjian, LU Chen. Study on water-initiated ring-opening polymerization technology of L-lactide [J]. Journal of Textile Research, 2020, 41(12): 21-25.
[3] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
[4] LI Wei, ZHANG Zhengqiao, WU Lanjuan, XU Zhenzhen, NI Qingqing, LU Yuhao. Preparation of phosphorylated-caproylated starch and its membrane properties [J]. Journal of Textile Research, 2020, 41(10): 81-86.
[5] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[6] YUE Chengfei, DING Changkun, LI Lu, CHENG Bowen. Carbodiimide/hydroxysuccinimide crosslinking modification and properties of collagen fibers [J]. Journal of Textile Research, 2020, 41(03): 1-7.
[7] OUYANG Pengfei, ZHANG Yufang, JIA Chunzi, ZHANG Jiayu. Properties of regenerated fibers from bamboo pulp / ionic liquid combined system [J]. Journal of Textile Research, 2020, 41(01): 21-25.
[8] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose / graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[9] GUO Zengge, JIANG Zhaohui, JIA Zhao, PU Congcong, LI Xin, CHENG Bowen. Influence of pressure on rheological behavior of polyethylene terephthalate-polyamide 6 copolymer/polyamide 6 blends [J]. Journal of Textile Research, 2019, 40(12): 27-31.
[10] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[11] XIANG Guodong, GAO Qingwen, DENG Qianqian, ZHANG Xuzhen, WANG Xiuhua. Preparation and performance of easy cationic dye-modified polyester by solid-phase polycondensation [J]. Journal of Textile Research, 2019, 40(04): 21-25.
[12] ZHANG Anying, WANG Zhaoying, WANG Rui, DONG Zhenfeng, WEI Lifei, WANG Deyi. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof [J]. Journal of Textile Research, 2019, 40(04): 7-14.
[13] FU Chiyu, WANG Cancan, HE Mantang, XIA Zhigang. Contact spinning based on simplified embeddable and locatable system and properties of spun ramie yarn [J]. Journal of Textile Research, 2019, 40(01): 40-45.
[14] . Preparation and properties of high strength and high modulus polyoxymethylene fibers [J]. Journal of Textile Research, 2018, 39(10): 1-6.
[15] . Preparation and performance of pentaerythritol phosphate/zine diethyl phosphate synergistic flame retardant polyamide 6 [J]. Journal of Textile Research, 2018, 39(09): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!