Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 182-187.doi: 10.13475/j.fzxb.20190404806
• Comprehensive Review • Previous Articles Next Articles
ZHANG Hengyu1,2, ZHANG Xiansheng3, XIAO Hong2,4(), SHI Meiwu2
CLC Number:
[1] | 张丽丽, 陈雁. 防辐射孕妇服电磁防护性能的测试与仿真[J]. 纺织学报, 2011,32(10):108-112. |
ZHANG Lili, CHEN Yan. Test and simulation of electromagnetic protection performance of radiation protection maternity wear[J]. Journal of Textile Research, 2011,32(10):108-112. | |
[2] | 施楣梧, 肖红, 王群. 纺织品电磁学研究及电磁纺织品开发[J]. 纺织学报, 2013,34(2):73-81. |
SHI Meiwu, XIAO Hong, WANG Qun. Electromagnetic research of textiles and development of electromagnetic textiles[J]. Journal of Textile Research, 2013,34(2):73-81. | |
[3] | 梁然然, 肖红, 王妮. 电磁屏蔽织物屏蔽效能理论计算的研究进展[J]. 纺织学报, 2016,37(2):161-169. |
LIANG Ranran, XIAO Hong, WANG Ni. Research progress in theoretical calculation of shielding effectiveness of electromagnetic shielding fabrics[J]. Journal of Textile Research, 2016,37(2):161-169. | |
[4] | 肖红, 施楣梧. 电磁纺织品研究进展[J]. 纺织学报, 2014,35(1):151-157. |
XIAO Hong, SHI Meiwu. Research progress in electromagnetic textiles[J]. Journal of Textile Research, 2014,35(1):151-157. | |
[5] | SHARIF F, ARJMAND M, MOUD A A, et al. Segregated hybrid poly(methylmethacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2017,9(16):14171-14179. |
[6] | SUN R, ZHANG H B, LIU J, et al. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding[J]. Advanced Functional Materials, 2017,27(45):1702807. |
[7] | LIN Y, DAI J, YANG H, et al. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J]. Chemical Engineering Journal, 2018,334:1740-1748. |
[8] |
HAN M, YIN X, HOU Z, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces, 2017,9(13):11803-11810.
pmid: 28317374 |
[9] | LING Z, REN C E, ZHAO M, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(47):16676-16681. |
[10] | SUN Z M. Progress in research and development on MAX phases: a family of layered ternary com-pounds[J]. Int Mater Rev, 2011,56(3):143-166. |
[11] | NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014,26(7):992-1005. |
[12] | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011,23(37):4248-4253. |
[13] | MASHTALIR O, NAGUIB M, MOCHALIN V, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013,4(1):1716. |
[14] |
MA Y, YUE Y, ZHANG H, et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor[J]. ACS Nano, 2018,12(4):3209-3216.
doi: 10.1021/acsnano.7b06909 pmid: 29608277 |
[15] | ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synjournal and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017,29(18):7633-7644. |
[16] | PENG C, WEI P, CHEN X, et al. A hydrothermal etching route to synjournal of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance[J]. Ceramics International, 2018,44(15):18886-18893. |
[17] | LI J, DU Y L, HUO C, et al. Thermal stability of two-dimensional Ti2C nanosheets[J]. Ceramics International, 2015,41(2):2631-2635. |
[18] | URBANKOWSKI P, ANASORI B, HANTANASIRISAKUL K, et al. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes)[J]. Nanoscale, 2017,45(9):17722-17730. |
[19] | HU Q, WANG H, WU Q, et al. Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations[J]. International Journal of Hydrogen Energy, 2014,39(20):10606-10612. |
[20] | MESHKIAN R, NASLUND L, HALIM J, et al. Synjournal of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C[J]. Scripta Materialia, 2015,108:147-150. |
[21] |
CAI Y, SHEN J, GE G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J]. ACS Nano, 2017,12(1) 56-62.
pmid: 29202226 |
[22] | MU W, DU S, LI X, et al. Removal of radioactive palladium based on novel 2D titanium carbides[J]. Chemical Engineering Journal, 2019,358:283-290. |
[23] | XIE X, ZHAO M, ANASORI B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016,26(26):513-523. |
[24] |
GHIDIU M, LUKATSKAYA M R, ZHAO M, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014,516(7529):78-81.
pmid: 25470044 |
[25] | YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017,27(30):1701264. |
[26] | LIU P, NG V M, YAO Z, et al. Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance[J]. Materials Letters, 2018,229:286-289. |
[27] | TONG Y, HE M, ZHOU Y, et al. Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time[J]. Journal of Materials Science: Materials in Electronics, 2018,29(10):8078-8088. |
[28] | LIU X, WU J, HE J, et al. Electromagnetic interference shielding effectiveness of titanium carbide sheets[J]. Materials Letters, 2017,205(205):261-263. |
[29] | FENG W, LUO H, WANG Y, et al. Ti3C2 MXene: a promising microwave absorbing material[J]. RSC Advances, 2018,8(5):2398-2403. |
[30] |
SHAHZAD F, ALHABEB M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016,353(6304):1137-1140.
doi: 10.1126/science.aag2421 pmid: 27609888 |
[31] | LIU J, ZHANG H B, SUN R, et al. Hydrophobic,flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding.[J]. Advanced Materials, 2017,29(38):1702367. |
[32] | ZHAO S, ZHANG H B, LUO J Q, et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J]. ACS Nano, 2018,11(12):11193-11202. |
[33] | RAAGULAN K, BRAVEENTH R, JANG H J, et al. Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric[J]. Materials, 2018,11(10):1803. |
[34] |
LI X, YIN X, XU H, et al. Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band[J]. ACS Applied Materials & Interfaces, 2018,10(40):34524-34533.
doi: 10.1021/acsami.8b13658 pmid: 30192138 |
[35] | 范静静, 王鸿博, 傅佳佳, 等. 层层自组装的碳纳米管复合导电棉织物制备[J]. 纺织学报, 2019,40(4):90-95. |
FAN Jingjing, WANG Hongbo, FU Jiajia, et al. Preparation of self-assembled carbon nanotube composite conductive cotton fabrics[J]. Journal of Textile Research, 2019,40(4):90-95. | |
[36] |
CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano, 2018,12(5):4583-4593.
doi: 10.1021/acsnano.8b00997 pmid: 29709183 |
[37] |
WENG G M, LI J, ALHABEB M, et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding[J]. Advanced Functional Materials, 2018,28(44):1803360.
doi: 10.1002/adfm.v28.44 |
[38] | GENG L, ZHU P, WEI Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding[J]. Cellulose, 2019,26(4):2833-2847. |
[39] | WANG Q, ZHANG H, LIU J, et al. Multifunctional and water‐resistant MXene‐decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019,29(7):1806819. |
[40] | XIE Y, KENTt P R. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers[J]. Physical Review B, 2013,87(23):235441. |
[41] | SHEIN I R, IVANOVSKII A L. Graphene-like titanium carbides and nitrides Tin +1Cn, Tin +1Nn (n=1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability[J]. Computational Materials Science, 2012,65:104-114. |
[42] | LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synjournal on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials, 2016,2(12):1600255. |
[43] | URBANKOWSKI P ANASORI B, HANTANASIRISAKUL K, 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes)[J]. Nanoscale, 2017:10.1039.C7NR06721F. |
[44] |
LI X, YIN X, HAN M, et al. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene[J]. Journal of Materials Chemistry C, 2017,5(30). 7621-7628.
doi: 10.1039/C7TC01991B |
[45] |
HAN M, YIN X, LI X, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces, 2017,9(23):20038-20045.
doi: 10.1021/acsami.7b04602 pmid: 28534403 |
|