Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 56-61.doi: 10.13475/j.fzxb.20190405906

• Textile Engineering • Previous Articles     Next Articles

Electric conduction and resistance theory model of circular weft knitted electrodes

ZHANG Jiahui1,2, WANG Jianping1,2,3()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design & Technology (Donghua University), Ministry of Education, Shanghai 200051, China
    3. Shanghai Institute of International Design and Innovation, Tongji University, Shanghai 200092, China
  • Received:2019-04-23 Revised:2019-12-14 Online:2020-03-15 Published:2020-03-27
  • Contact: WANG Jianping E-mail:wangjp@dhu.edu.cn

Abstract:

In order to provide theoretical guidance for designing leggings with circular weft-knitted electrodes, based on the loop structure of knitted fabrics, a theoretical model of resistance module was established, with 2 types of conductive materials, 3 knitted structures and 4 electrode sizes, totaling 24 leggings. The leggings were knitted and treated by heat setting to analyze the electric conduction of knitted electrode, for exploring the influence of different factors on the electric conduction of knitted electrodes and establishing a linear fitting resistance model of knitted electrodes. The results show that different factors have significant influence on the conductivity of flexible electrodes, among which conductive material has the most significant influence. Heat setting has little effect on the electric conduction of flexible electrodes knitted by silver plated yarn therefore it can be used as the material for flexible knitted electrodes that need to be heat-set. The theoretical model of resistance module can be used to analyze and predict quantitatively the resistance of the knitted electrodes.

Key words: knitted electrode, resistance module, electric conduction, theoretical model, intelligent garment

CLC Number: 

  • TS941.19

Tab.1

Parameters of yarns"

纱线
编号
纱线
类型
单纱线
密度/dtex
生产
厂商
纤维直径/
μm
捻度/
(捻·m-1)
A 镀银锦
纶纱
222 青岛志远翔宇功能
性面料有限公司
27.6 570
B 2合股不锈
钢纤维纱
111 东莞盛芯特殊绳带
有限公司
14.5 230
C 2合股
锦纶纱
78 东方桂冠针纺织品
有限公司
24.0 610
D 锦纶/氨纶
双包纱
44/44/
44
上海利以德特种丝
有限公司
15.0 900(S)
1 160(Z)
E 锦纶/氨纶
双包纱
311/
44/44
上海利以德特种丝
有限公司
15.0 1 080(S)
1 250(Z)

Fig.1

Loops' structures. (a) Plain weave fabric;(b) 1×1 rib fabric; (c) 1×2 rib fabric"

Tab.2

Processing parameter of weft-knitted electrodes"

纱线
编号
组织
结构
横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm)-1)
A 平纹 58 36
1×1抽条 64 38
1×2抽条 65 40
B 平纹 53 29
1×1抽条 53 33
1×2抽条 56 36

Tab.3

Test results of conductive yarn"

纱线
编号
复丝
根数
伸长率/
%
强力/
cN
电阻拟合
情况
电阻率/
(Ω·m)
A 48 44.5 869.8 y=5.036 62x+
0.197 57
1.40×10-5
B 100 1.0 2 149.0 y=0.366 47x+
0.249 1
1.21×10-6

Fig.2

Loop's structure and its resistance theory model. (a) Loop's structure; (b) Resistance hexagonal model;(c) Resistance module; (d) Resistance module theory model"

Tab.4

Theoretical value K of knitted electrode resistance"

纵行数×横列数 KpH KpZ K1H K1Z K2H K2Z
12×24 0.686 5 3.122 9 0.414 4 6.000 0 0.268 9 9.250 0
16×32 0.701 1 3.200 6 0.402 3 5.875 0 0.218 9 7.400 0
20×40 0.732 9 3.774 4 0.421 8 6.100 0 0.330 5 9.838 1
24×48 0.760 0 3.387 7 0.440 6 6.383 3 0.287 0 10.270 2

Fig.3

Horizontal resistance of knitted electrodes. (a) Plain weave fabric; (b) 1×1 rib fabric; (c) 1×2 rib fabric"

Fig.4

Vertical resistance of knitted electrodes. (a) Plain weave fabric; (b) 1×1 rib fabric; (c) 1×2 rib fabric"

Tab.5

Intersubjective effect of horizontal and vertical resistance of knitted electrodes"

横向电阻F 纵向电阻F
原料 3 600.039* 1 713.532*
尺寸 72.749* 125.455*
组织 199.558* 603.008*
原料×尺寸 20.525* 46.996*
原料×组织 31.619* 1 212.312*
尺寸×组织 5.886* 60.557*
原料×尺寸×组织 2.977* 69.926*

Tab.6

Mean marginal estimation of materials to horizontal and vertical resistance of knitted electrodes"

原料 横向电阻/Ω 纵向电阻/Ω
均值 标准误差 均值 标准误差
A 0.971 0.007 1.371 0.018
B 0.402 0.007 2.530 0.018

Tab.7

Mean marginal estimation of sizes to horizontal and vertical resistance of knitted electrodes"

纵行数×
横列数
横向电阻/Ω 纵向电阻/Ω
均值 标准误差 均值 标准误差
12×24 0.625 0.009 1.638 0.025
16×32 0.617 0.009 1.724 0.025
20×40 0.717 0.009 2.158 0.025
24×48 0.786 0.009 2.266 0.025

Tab.8

Mean marginal estimation of structures to horizontal and vertical resistance of knitted electrodes"

组织 横向电阻/Ω 纵向电阻/Ω
均值 标准误差 均值 标准误差
平纹 0.819 0.008 2.629 0.024
1×1抽条 0.603 0.008 1.582 0.024
1×2抽条 0.637 0.008 1.629 0.024

Tab.9

Partial correlation coefficient between horizontal and vertical resistance and value K of knitted electrodes"

组织 偏相关系数
横向电阻 纵向电阻
平纹 0.931* 0.658
1×1抽条 0.802* 0.901*
1×2抽条 0.781* 0.711

Tab.10

Regression model of horizontal resistance of knitted electrodes"

回归方程 调整R2
Yp=0.140r+3.030KpH-1.743 0.986
Y1=0.101r+5.942K1H-2.164 0.920
Y2=0.124r+1.111K2H-0.005 0.980
[1] SONG H, LEE J, KANG H, et al. Textile electrodes of jacquard woven fabrics for biosignal measurement[J]. Journal of The Textile Institute, 2010,101(8):758-770.
doi: 10.1080/00405000903442086
[2] 刘焘, 邹奉元. 涂碳纤维导电针织物的结构设计及其传感性能[J]. 纺织学报, 2014,35(9):31-35.
LIU Tao, ZOU Fengyuan. Structural design and sening performance of conductive knitted fabrics of carbon coated fibers[J]. Journal of Textile Research, 2014,35(9):31-35.
[3] GONG S, SCHWALB W, WANG Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J]. Nature Communications, 2014,5(2):1-8.
[4] 蔡倩文. 基于导电纤维针织物的柔性传感器呼吸监测研究[D]. 杭州:浙江理工大学, 2015: 18-32.
CAI Qianwen. Based on the flexible sensor of conductive fiber knitted fabric respiratory monitoring research[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 18-32.
[5] 谢娟. 针织物传感器双向延伸电-力学性能及肢体动作监测研究[D]. 上海:东华大学, 2015: 12-17.
XIE Juan. Research into electro-mechanical properties of knitted sensor under strip biaxial elongation and application in monitoring body movements[D]. Shanghai: Donghua University, 2015: 12-17.
[6] VOJTECH L, BORTEL R, NERUDA M, et al. Wearable textile electrodes for ECG measurement[J]. Advances in Electrical & Electronic Engineering, 2013,11(5):410-414.
[7] 王金凤, 龙海如. 线圈转移对导电弹性针织柔性传感器的电-力学性能影响[J]. 纺织学报, 2013,34(7):62-68.
WANG Jinfeng, LONG Hairu. Effect of loop transfer on electro-mechanical properties of conductive elastic wearable knitted sensors[J]. Journal of Textile Research, 2013,34(7):62-68.
[8] 蔡倩文, 王金凤, 陈慰来. 纬编针织柔性传感器结构及其导电性能[J]. 纺织学报, 2016,37(6):48-53.
CAI Qianwen, WANG Jinfeng, CHEN Weilai. Structures and electrical properties of weft-knitted flexible sensors[J]. Journal of Textile Research, 2016,37(6):48-53.
[9] 陈斌, 李娜娜, 蔡璐, 等. 导电针织物结构设计及性能研究[J]. 针织工业, 2015(6):23-25.
CHEN Bin, LI Nana, CAI Lu, et al. Structure design of conductive fiber knitted fabric and its property analy-sis[J]. Knitting Industries, 2015(6):23-25.
[10] SEYEDIN S, MORADI S, SINGH C, et al. Continuous production of stretchable conductive multi-filaments in kilometer scale enables facile knitting of wearable strain sensing textiles[J]. Applied Materials Today, 2018,11:255-263.
[11] 蔡倩文, 陈慰来, 王金凤. 洗涤及热定型对柔性传感器导电性能的影响[J]. 现代纺织技术, 2017,25(1):23-27,55.
CAI Qianwen, CHEN Weilai, WANG Jinfeng. Effect of washing and heat setting on electric conduction of flexible sensors[J]. Advanced Textile Technology, 2017,25(1):23-27,55.
[1] XIAO Qi, WANG Rui, SUN Hongyu, FANG Shu, LI Danyang. Research progress on theoretical models of mechanisms of fuzzing and pilling [J]. Journal of Textile Research, 2020, 41(02): 172-178.
[2] BAI He, QIAN Xiaoming, FAN Jintu, QIAN Yao, LIU Yongsheng, WANG Xiaobo. Theoretical model for number of fiber contacts in fibrous porous materials [J]. Journal of Textile Research, 2019, 40(12): 21-26.
[3] He-Chun CHEN. Shear deformation of annular shaped woven fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 53-56.
[4] HU Zhengyu;YU Haifeng;LU Kaiyang. Establishment of new titer sensing theoretical model of denierer [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(3): 101-104.
[5] GAO Jing;YU Wei-dong. Absorbent quality of down fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(11): 28-31.
[6] WANG Xiao-mei;KE Qin-fei. New method for determining the initial rheological force of melt-blowing model [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(3): 1-3.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!