Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (05): 38-44.doi: 10.13475/j.fzxb.20190406007

• Fiber Materials • Previous Articles     Next Articles

Stab resistance of composites with synthetic diamond filled polyimide resin matrix

CHEN Lifu1, YU Weidong1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Fabric Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2019-04-23 Revised:2020-01-11 Online:2020-05-15 Published:2020-06-02
  • Contact: YU Weidong E-mail:wdyu@dhu.edu.cn

Abstract:

In order to study the stab resistance and mechanism of resin materials, two types of synthetic diamond-filled polyimide resin-based composite resin sheets were prepared by hand-forming and hot-pressing, respectively, which were hand lay-up and uniform composites. The effects of particle size and filling volume fraction of synthetic diamond on puncture resistance of the resin sheet are discussed. The results showed that the anti-stab performance of the polyimide resin sheet are improved due to synthetic diamond fillings, and the composite structure make from such resin demonstrates the better stab resistance. It is found that as the number of synthetic diamonds meshes increased, leading to diameter decrease, the stab resistance of the composite decreases first followed by an increase. It is understood that the stab-proof mechanism is basically associated to the collision probability and the resin-based anti-blocking. From analyzing the stab resistance and the work done, the stab resistance of the resin sheet gradually decreases with the increase of the volume fraction of the artificial diamond filling, which is believed to be caused by embrittlement and destruction of the composite resin sheet. In particular, the resin has the optimal stab resistance when the particle diameter is 300 μm and the volume fraction is 10% in the sheet.

Key words: filling modification, synthetic diamond, polyimide, stab resistance, composite material

CLC Number: 

  • TS941

Fig.1

Manufacturing process of type I multilayer synthetic diamond-PI composite resin sheet"

Fig.2

Process flow of type II multilayer synthetic diamond-PI composite resin sheet"

Fig.3

Synthetic diamond(×50)"

Fig.4

Tool is magnified 50 times before and after puncturing comparison. (a) Before puncturing;(b) Puncturing small particle size;(c) Puncturing big particle size"

Fig.5

Synthetic diamonds are completely blocking the tip"

Fig.6

Round synthetic diamond repeating unit under critical conditions"

Tab.1

Volume fraction distribution of SD during inevitable collision"

粒径/
μm
r/
μm
S/
104 μm2
S1/
104 μm2
Vf/
%
300.0 150.00 28.29 14.130 49.95
150.0 77.50 8.89 3.580 40.27
75.5 38.25 2.89 0.920 31.83
46.0 23.00 1.50 0.330 22.00
30.0 15.00 0.94 0.140 14.89
3.0 1.50 0.28 0.001 0.50

Fig.7

Cross-section of two different structural composite resin sheets (×50). (a) Image of type I optical microscope; (b) Image of type II optical microscope; (c) Image of type I SEM; (d) Image of type II SEM"

Fig.8

Quasi-static stab resistance of different structural resin sheets. (a) Pure resin; (b) Type I; (c) Type II"

Tab.2

Specifications of stab-resistant materials and quasi-static stab resistance"

树脂片
种类
厚度/
mm
面密度/
(g·m-2)
准静态
最大防
刺力/N
准静态
防刺性能/
(N·g·m2)
准静态
模量/
(N·cm-1)
平均单层
树脂片消
耗功/J
纯PI 2.65 2 600 197.95 0.076 562.8 0.226
I型 2.80 2 600 310.00 0.119 686.3 0.359
II型 2.18 2 600 270.68 0.104 418.9 0.336

Fig.9

Single layer resin sheet stab resistance test"

Fig.10

Stab resistance of a single-layer resin sheet with volume fraction of 10%"

Fig.11

Quasi-static stab resistance test of single-layer different volume fraction resin tablets"

Tab.3

International stab resistance performance classification"

防护
等级
撞击能量
E1/J
E1允许穿透的
最大深度
/mm
撞击能量
E2/J
E2允许穿透
的最大深度
/mm
1 24 7 36 20
2 33 7 50 20
3 43 7 65 20

Tab.4

Specifications and dynamic stab resistance of composite resin sheet"

树脂片
种类
厚度/
mm
等效
粒径/
μm
体积
分数/
%
面密度/
(g·m-2)
刀具最大
防刺力/
N
刺穿
长度
L/mm
I型 2.65 0 0 2 600 372 25.08
II型 3.02 300 30 2 600 424 17.28
II型 2.02 300 50 2 600 379 20.36
II型 2.78 155 30 2 600 422 18.35
II型 2.65 155 50 2 600 446 21.47
II型 2.89 75.5 30 2 600 416 22.39
II型 2.32 75.5 50 2 600 422 24.52

Tab.5

Type I stab resistant material specifications and dynamic stab resistance"

厚度/
mm
等效
粒径/
μm
体积
分数/
%
面密度/
(g·m-2)
刀具
最大防
刺力/N
刺穿
长度
L/mm
4.10 0 0 2 600 372 25.08
3.30 300 10 2 600 496 10.28
3.50 300 30 2 600 643 6.87
3.40 300 50 2 600 867 12.37
[1] 郭静荷, 姜亚明. 防刺个体装甲材料的发展与现状[J]. 产业用纺织品, 2004(6):5-8.
GUO Jinghe, JIANG Yaming. Development and present situation of stab-resistant individual armor material[J]. Technical Textiles, 2004(6):5-8.
[2] 赵玉梅. 柔性复合防刺服的研究[D]. 上海:东华大学, 2005: 2-31.
ZHAO Yumei. Study of complex stab-resistant body Armor[D]. Shanghai: Donghua University, 2005: 2-31.
[3] 顾肇文. 柔性复合防刺服机制研究[J]. 纺织学报, 2006,27(8):80-84.
GU Zhaowen. Study on the principle of soft complex stab-resistant body armor[J]. Journal of Textile Research, 2006,27(8):80-84.
[4] JOHNSON A, BINGHAM G A, WIMPENNY D I. Additive manufactured textiles for high-performance stab resistant applications[J]. Rapid Prototyping Journal, 2013,19(3):199-207.
[5] YANG Shasha, DU Zhaoqun. Analysis of stabbing performance of UHMWPE fabric at different angles[J]. Advanced Materials Research, 2013,821/822(9):223-227.
[6] KIM H, NAM I. Stab-resisting behavior of polymeric resin reinforced p-aramid fabrics[J]. Journal of Applied Polymer Science, 2011,123(5):2733-2742.
[7] 晏义伍, 曹海琳, 赵金华. 软体防刺复合材料的设计与优化[J]. 复合材料学报, 2013,30(2):247-253.
YAN Yiwu, CAO Hailin, ZHAO Jinhua. Design and optimization of soft stab resistant armor composites[J]. Acta Materiae Compositaes Sinica, 2013,30(2):247-253.
[8] 董继萍, 刘晓艳, 于伟东. 织物表面防刺割树脂片形状的确定[J]. 纺织学报, 2017,38(12):60-64.
DONG Jiping, LIU Xiaoyan, YU Weidong. Determination about geometry of stab-resistant resin flakes on surface of fabric[J]. Journal of Textile Research, 2017,38(12):60-64.
[9] 刘娟, 王新厚. 树脂成型柔性防刺材料空隙率对防刺性能的影响[J]. 产业用纺织品, 2015,33(5):7-10.
LIU Juan, WANG Xinhou. Effect of void ratio of resin-formed flexible stab-resistant materials on stab resist-ance[J]. Technical Textiles, 2015,33(5):7-10.
[10] 董继萍. 树脂片防刺织物的结构设计与防护性能研究[D]. 上海:东华大学, 2018: 1-46.
DONG Jiping. Structural design and protective performance of the stab resistant fabric with resin flakes[D]. Shanghai: Donghua University, 2018: 1-46.
[11] 练滢, 刘春娜, 王新厚. 树脂成型柔性防刺材料的防刺性能研究[J]. 产业用纺织品, 2016,34(10):21-25.
LIAN Ying, LIU Chunna, WANG Xinhou. Study on the stab-resistance performance of flexible stab-resistance materials by means of resin molding[J] Technical Textiles, 2016,34(10):21-25
[12] 张政, 刘晓艳, 于伟东. 涂层防刺织物的制备及其防刺机制[J]. 纺织学报, 2018,39(3):108-113.
ZHANG Zheng, LIU Xiaoyan, YU Weidong. Preparation and stab-resistant mechanism of coated stab-resistant fabric[J]. Journal of Textile Research, 2018,39(3):108-113.
[13] JIA Junhong, ZHOU Haibin, GAO Shengqiang. A comparative investigation of the friction and wear behavior of polyimide composites under dry sliding and water-lubricated condition[J]. Materials Science & Engineering A, 2003,356(1):48-53.
[14] 邢京京, 钱晓明. 织物的防刺机制及刀具形状对防刺性能的影响[J]. 纺织学报, 2017,38(8):55-61.
XING Jingjing, QIAN Xiaoming. Stab-resistant mechanism of fabrics and influence of cutter shape on stab resistance[J]. Journal of Textile Research, 2017,38(8):55-61.
[1] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[2] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[3] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[4] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[5] LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63.
[6] ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187.
[7] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2 / graphene / cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
[8] WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research progress of stitching technology of composite materials [J]. Journal of Textile Research, 2019, 40(12): 169-177.
[9] DU Xiaodong, LIN Fangbing, JIANG Jinhua, CHEN Nanliang, LIU Yanping. Influence of oxygen plasma modification on surface properties of polyimide fiber [J]. Journal of Textile Research, 2019, 40(09): 22-27.
[10] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[11] WANG Xinhou, ZHANG Linmei, SUN Xiaoxia. Preparation of flexible puncture-proof polyester/SiC and puncture-proof property [J]. Journal of Textile Research, 2019, 40(06): 171-175.
[12] TAO Xuchen, LI Lin. Preparation and adsorption kinetics of calixarene fibers with selective adsorption of Pt(IV) [J]. Journal of Textile Research, 2019, 40(03): 20-25.
[13] MIAO Runwu, JIN Lihua, WEI Qiyu, HAN Xiao, HONG Jianhan. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials [J]. Journal of Textile Research, 2019, 40(02): 100-104.
[14] . Research progress on graphene/silk composite materials [J]. Journal of Textile Research, 2018, 39(10): 168-174.
[15] . High-performance polyimide fiber and its weavability [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!