Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 45-50.doi: 10.13475/j.fzxb.20190406506

• Textile Engineering • Previous Articles     Next Articles

Elastic and electrical properties of stainless steel fiber/cotton blended spandex wrap yarn

ZHAO Yaru1,2, XIAO Hong2,3(), CHEN Jianying1,2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Institute of Quartermaster Engineering & Technology, Institute of System Engineering, Academy of Military Science, Beijing 100010, China
    3. School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430000, China
  • Received:2019-04-23 Revised:2019-12-15 Online:2020-03-15 Published:2020-03-27
  • Contact: XIAO Hong E-mail:76echo@vip.sina.com

Abstract:

In order to develop electromagnetic functional yarns with both elastic and electrical properties, a series of elastic stainless steel fiber/cotton ammonia yarns were developed with spandex as the core yarn and wrapped with stainless steel fiber/cotton blended yarn. On the Instron 5566 tester, combined with a multimeter, the stress-strain, strain-resistance and elongational elastic recovery curves of the elastic yarn were obtained, and the electrical properties of the yarn under different tensile conditions were investigated. The results show that the addition of spandex yarn improves the elastic properties of stainless steel fiber/cotton blended yarn, but the spandex core yarn would fracture easily. When the content of stainless steel short fiber increases, the elastic elongation and recovery properties of elastic yarn decrease, and plastic deformation increases. The strain increases of the elastic yarn, causes the electrical resistance of the stainless steel fiber/cotton ammonia yarn to increase first and then decreases until the yarn breaks, and the maximum value of the resistance occurs when the spandex filament is straight but not elongated.

Key words: electromagnetic functional yarn, elastic recovery rate, plastic deformation rate, electrical properties, conductive yarn

CLC Number: 

  • TS155.6

Tab.1

Sample specifications and related data"

纱线
编号
纱线组成 线密度 捻度/
(捻·m-1)
1# 不锈钢短纤维/棉(30/70)包覆氨纶 16.4 tex
2# 不锈钢短纤维/棉(20/80)包覆氨纶 16.4 tex
3# 不锈钢短纤维/棉(30/70) 16.4 tex
4# 不锈钢短纤维/棉(20/80) 16.4 tex
5# 棉/氨纶(95/5) 49.2 tex
6# 2根1#纱合股 16.4 tex×2 460
7# 2根2#纱合股 16.4 tex×2 460
8# 1#和5#合股 16.4 tex+49.2 tex 320
9# 2#和5#合股 16.4 tex+49.2 tex 320
10# 2根1#和氨纶长丝并合 16.4 tex×2+4.44 tex 550
11# 2根2#和氨纶长丝并合 16.4 tex×2+4.44 tex 550

Fig.1

Elastic recovery rate and plastic deformation rate of yarns with different stainless steel short fiber content"

Fig.2

Schematic diagram of yarn shape change during stretching"

Fig.3

Typical stress-strain and strain-resistance curves"

Fig.4

Strain-resistance curves of yarns with different stainless steel short fiber content"

Fig.5

Strain-resistance curves of different elastic yarns"

Fig.6

Strain-resistance curves of 1#、2#、6#、7# yarn"

Fig.7

Strain-resistance curves of 1# and 10# yarn"

Fig.8

Strain-resistance curves of 2# and 11# yarn"

Fig.9

Appearance of 1#、2#、5#、6#、7# yarn"

Fig.10

Status of 1# ammonia covered yarn. (a) Entire state of yarn(×70); (b) Spandex yarn broken portion in yarn(×130); (c) Spandex yarn unbroken portion in yarn(×130)"

[1] 魏作红. 铜/镍磷合金复合镀涤纶电磁屏蔽织物的制备[J]. 北京服装学院学报(自然科学版), 2015,35(4):76-82.
WEI Zuohong. Preparation of copper/Ni-P alloy composite plating polyester electromagnetic shielding fabric[J]. Journal of Beijing Institute of Clothing Technology(Natural Science Edition), 2015,35(4):76-82.
[2] 田紫阳. 电磁屏蔽用导电橡胶制备工艺的研究[D]. 北京:北京工业大学, 2016: 11-20.
TIAN Ziyang. Research on preparation technology of conductive rubber for electromagnetic shielding[D]. Beijing:Beijing University of Technology, 2016: 11-20.
[3] 俞菁. 基于织物的PANI/Cu复合膜的构建及在电磁屏蔽织物上的应用[D]. 上海:上海工程技术大学, 2015: 5-15.
YU Jing. Construction of fabric-based PANI/Cu composite film and its application on electromagnetic shielding fabrics[D]. Shanghai:Shanghai University of Engineering and Technology, 2015: 5-15.
[4] JIANG S X, GUO R H. Electromagnetic shielding and corrosion resistance of electroless Ni-P/Cu-Ni multilayer plated polyester fabric[J]. Surface & Coatings Technology, 2011,205:4274-4279.
[5] 肖红, 施楣梧. 电磁纺织品研究进展[J]. 纺织学报, 2014,35(1):151-157.
XIAO Hong, SHI Meiwu. Research progress in electromagnetic textiles[J]. Journal of Textile Research, 2014,35(1):151-157.
[6] 肖红. 电磁辐射防护织物及服装的技术特点和标准分析[J]. 纺织导报, 2017(20):87-93.
XIAO Hong. Technical characteristics and standard analysis of electromagnetic radiation protection fabrics and garments[J]. China Textile Leader, 2017(20):87-93.
[7] 施楣梧, 王群. 电磁功能纺织材料[M]. 北京: 科学出版社, 2016: 18-30.
SHI Meiwu, WANG Qun. Electromagnetic functional textile materials [M]. Beijing: Science Press, 2016: 18-30.
[8] 施楣梧. 用有机导电纤维开发抗静电工作服面料[J]. 中国个体防护装备, 2003(4):13-15.
SHI Meiwu. Development of antistatic workwear fabrics with organic conductive fibers[J]. China Personal Protective Equipment, 2003(4):13-15.
[9] 朱正峰, 王军华. 不锈钢纤维及混纺纱性能探讨[J]. 中原工学院学报, 2007,18(4):22-24.
ZHU Zhengfeng, WANG Junhua. Discussion on properties of stainless steel fiber and blended yarn[J]. Journal of Zhongyuan Institute of Technology, 2007,18(4):22-24.
[10] 周淑雯, 胡吉永. 包覆结构对纱线应变传感器传感性能的影响[D]. 上海:东华大学, 2018: 15-23.
ZHOU Shuwen, HU Jiyong. The influence of the cladding structure on the sensing performance of the yarn strain sensor[D]. Shanghai:Donghua University, 2018: 15-23.
[11] ROSSI D D, DELLA S A, MAZZOLDI A. Dresswear:we are able hardwear[J]. Materials Science and Engineering, 1999,C7:31-35.
[12] LIAO X Q, LIAO Q L, ZHANG Z. A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection[J]. Adv Funct Mater, 2016,26:3074-3081.
[13] 于志财, 王华平. 一种防电磁辐射的弹性包缠纱及由其制得的织物:ZL107475845A[P]. 2017-12-15.
YU Zhicai, WANG Huaping. An elastic wrapped yarn for preventing electromagnetic radiation and a fabric made therefrom:ZL107475845A[P]. 2017-12-15.
[14] 张娣. 一种电磁屏蔽包芯纱的生产方法:ZL107190387A[P]. 2017-09-22.
ZHANG Di. A method for producing electromagnetic shielding core yarn:ZL107190387A[P]. 2017-09-22.
[15] 肖红, 施楣梧. 张力条件下不同热处理对PTT纤维及毛/PTT混纺纱弹性的影响[J]. 毛纺科技, 2006(9):12-16.
XIAO Hong, SHI Meiwu. Effect of different heat treatment on tensile properties of PTT fiber and wool/PTT blended yarn under tension[J]. Wool Textile Journal, 2006(9):12-16.
[16] 刘杰英. PBST纤维及产品力学性能和织物风格研究[D]. 上海:东华大学, 2010: 20-28.
LIU Jieying. PBST fiber and product mechanical properties and fabric style research[D]. Shanghai:Donghua University, 2010: 20-28.
[1] HU Chengye, MIAO Runwu, HAN Xiao, HONG Jianhan, GIL Ignacio. Effect of polyvinyl alcohol on durability of polyaniline conductive layer on poly(p-phenylene terephthamide) yarn surface [J]. Journal of Textile Research, 2020, 41(04): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!