Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (05): 1-7.doi: 10.13475/j.fzxb.20190407407

• Fiber Materials •     Next Articles

Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers

WANG Tingting1, LIU Liang1, CAO Xiuming2, WANG Qingqing1,2()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Jiangsu Sunshine Co., Ltd., Wuxi, Jiangsu 214400, China
  • Received:2019-04-28 Revised:2020-02-03 Online:2020-05-15 Published:2020-06-02
  • Contact: WANG Qingqing E-mail:qqwang@jiangnan.edu.cn

Abstract:

To overcome the limitation of antibiotic drugs in the treatment of drug resistant strains, photosensitizer hypocrellin(Hc)was added to the poly(methyl methacrylate-co-methacrylic acid) electrospinning solution to prepare the photodynamic broad-spectrum antibacterial nanofibrous membrane. The overall morphology, wettability, chemical structure and thermostability of the nanofibers before and after the addition of Hc were compared by scanning electron microscopy, static contact angle test, Fourier transform infrared spectrometry and thermogravimetric analysis, and the antibacterial ability to S. aureus and E. coli were also investigated. The results show that the addition of Hc causes increase in the diameter of nanofibers, increases its static contact angle by approximately 20° and decreases its wettability, slightly decreases its thermostability, and imparts good substrate oxidation under visible light. The antibacterial effect against S. aureus and E. coli reached 99.97% and 54.41% under light conditions, respectively.

Key words: hypocrellin, poly(methyl methacrylate-co-methacrylic acid), nanofiber, electrospinning, photodynamic antibacterial property

CLC Number: 

  • TQ342

Fig.1

SEM images of nanofibrous membranes with different Hc concentrations(×5 000)"

Tab.1

Diameters of PM and Hc-PM nanofibrous membrances"

Hc质量分数/% 平均直径/nm 直径标准差/nm 接触角/(°)
0.0 337.25 123.44 109.2
0.1 358.20 146.28 129.2
0.3 398.20 86.83 127.3
0.5 500.61 182.98 131.4

Fig.2

UV-vis spectra of Hc solution and nanofibrous membranes"

Fig.3

FT-IR of PM and Hc-PM nanofibrous membranes"

Fig.4

TG(a)and DTG(b)curves of PM and Hc-PM nanofibrous membranes"

Fig.5

EPR signal of TEMPO generated by Hc-PM membrane and TEMP after illumination"

Fig.6

UV-Vis absorption spectra of KI solution photooxidized by Hc-PM nanofibrous membrane"

Fig.7

UV-Vis absorbance of KI solution at 351 nm photooxidized by PM and Hc-PM nanofibrous membranes"

Fig.8

UV-Vis absorbance of KI solution at 351 nm photooxidized by different proportions of Hc-PM membranes"

Tab.2

Antibacterial effect of S. aureus and E. coli using PM and Hc-PM nanofibrous membranes"

Hc质量分数/% 暗室抑菌率/% 光照抑菌率/%
金黄色葡萄球菌 大肠杆菌 金黄色葡萄球菌 大肠杆菌
0.0 4.12±0.19 5.74±1.54 9.28±0.37 11.48±1.94
0.5 0.90±0.05 10.29±1.53 99.97±0.03 54.41±16.72
[1] LAXMINARAYAN R, MATSOSO P, PANT S, et al. Access to effective antimicrobials: a worldwide challenge[J]. The Lancet, 2015,387:168-175.
[2] RENWICK M J, SIMPKIN V, MOSSIALOS E. Targeting innovation in antibiotic drug discovery and development: the need for a one health-one Europe-one world framework[M]. Europe: European Observatory on Health Systems and Policies, 2016: 9-12.
[3] WAINWRIGHT M. Photodynamic antimicrobial chemotherapy (PACT)[J]. Journal of Antimicrobial Chemotherapy, 1998,42(1):13-28.
[4] CIEPLIK F, DENG D M, CRIELAARD W, et al. Antimicrobial photodynamic therapy: what we know and what we don't[J]. Critical Reviews in Microbiology, 2018,44:571-589.
pmid: 29749263
[5] ABRAHAMSE H, HAMBLIN M R. New photosensitizers for photodynamic therapy[J]. Biochemical Journal, 2016,473(4):347-364.
doi: 10.1042/BJ20150942
[6] WAN X Y, CHEN Y T. Hypocrellin a: a new drug for photochemotherapy[J]. Chinese Science Bulletin, 1981,26(11):1040-1042.
[7] DIWU Z J, LOWN J W. Hypocrellins and their use in photosensitization[J]. Photochemistry and Photobiology, 1990,52(3):609-616.
doi: 10.1111/j.1751-1097.1990.tb01807.x pmid: 2284353
[8] 刘岩岩, 王雪松, 张宝文. 竹红菌素类光动力药物[J]. 化学进展, 2008(9):1345-1352.
LIU Yanyan, WANG Xuesong, ZHANG Baowen. Hypocrellin-based photodynamic sensitizers[J]. Progress in Chemistry, 2008(9):1345-1352.
[9] YU C, CHEN S, ZHANG M, et al. Spectroscopic studies and photodynamic actions of hypocrellin B in liposomes[J]. Photochemistry and Photobiology, 2001,73(5):482-488.
pmid: 11367568
[10] 仇亦然. 竹红菌素的提取分离及其脂质体的制备研究[D]. 无锡:江南大学, 2012: 31-45.
QIU Yiran. Extraction and separation of hypocrellin and preparation of its liposomes[D]. Wuxi:Jiangnan University, 2012: 31-45.
[11] ZHOU L, WANG W, WEI S H, et al. Encapsulation of hydrophobic anticancer drug in nano-scale porous ceramic materials for photodynamic therapy[J]. Journal of Porous Materials, 2011,18(4):517-522.
[12] LI Z B, WANG J G, CHEN J R, et al. Hypocrellin B doped and pH-responsive silica nanoparticles for photodynamic therapy[J]. Science China (Chemistry), 2010,53(9):1994-1999.
[13] PARAMAGURU G, SOLOMON R V, VENUVANALINGAM P, et al. Spectroscopic studies on TiO2enhanced binding of hypocrellin B with DNA[J]. Journal of Fluorescence, 2011,21(5):1887-1895.
pmid: 21448702
[14] 王艳. 水溶性聚合物溶液静电纺丝的研究[D]. 北京:北京化工大学, 2015: 4-7.
WANG Yan. Water-soluble polymer solution electrospinning[D]. Beijing: Beijing University of Chemical Technology, 2015: 4-7.
[15] DOLANSKY J, HENKE P, KUBAT P, et al. Polystyrene nanofiber materials for visible light-driven dual antibacterial action via simultaneous photogeneration of NO and O2(1Δg) [J]. ACS Applied Materials & Interfaces, 2015,7(41):22980-22989.
doi: 10.1021/acsami.5b06233 pmid: 26430799
[16] 张权, 李深, 王清清, 等. 甲基丙烯酸甲酯/甲基丙烯酸共聚物光敏抗菌型纳米纤维膜的制备及其性能表征[J]. 纺织学报, 2017,38(2):1-6.
ZHANG Quan, LI Shen, WANG Qingqing, et al. Preparation and characterization of photodynamic antimicrobial poly(methyl methacrylate-co-methacrylic acid) electrospun nanofibrous membrane[J]. Journal of Textile Research, 2017,38(2):1-6.
[17] 李琪, 魏取福, 汪莹莹, 等. 锦纶6/有机蒙脱土复合纳米纤维的制备与表征[J]. 纺织学报, 2007,28(11):1-4.
LI Qi, WEI Qufu, WANG Yingying, et al. Preparation and characterization of PA6/organical montmorillonite composite nanofibers[J]. Journal of Textile Research, 2007,28(11):1-4.
[18] 丁慧颖. 光动力治疗基本原理及其应用[M]. 北京: 化学工业出版社, 2014: 103-104.
DING Huiying. Photodynamic therapy: basic principles and applications[M]. Beijing: Chemical Industry Press, 2014: 103-104.
[19] BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010,28(3):325-347.
doi: 10.1016/j.biotechadv.2010.01.004 pmid: 20100560
[20] WANG T T, XU L, SHEN H Y, et al. Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose[J]. Cellulose, 2019.DOI: 10.1007/S10570-019-02852-9.
doi: 10.1007/s10570-014-0471-4 pmid: 26412951
[21] 蒋华义, 张亦翔, 梁爱国, 等. 材料表面润湿性的影响因素及预测模型[J]. 表面技术, 2018,47(1):60-65.
JIANG Huayi, ZHANG Yixiang, LIANG Aiguo, et al. Influencing factors and prediction model of material surface wettability[J]. Surface Technology, 2018,47(1):60-65.
[22] ZHANG H Y, ZHAO H X, ZHANG Z Y. Studying dynamic process of photosensitization by ESR method[J]. Science in China (Serious C), 1997,40(4):356-362.
[23] HAMBLIN M R, ABRAHAMSE H. Inorganic salts and antimicrobial photodynamic therapy: mechanistic conundrums?[J]. Molecules, 2018,23:6-10.
[24] HENKE P, KOZAK H, ARTEMENKO A, et al. Superhydrophilic polystyrene nanofiber materials generating O2(1Δg): postprocessing surface modifications efficient antibacterial effect [J]. ACS Applied Materials & Interfaces, 2014,6(15):13007-13014.
doi: 10.1021/am502917w pmid: 25014212
[25] MAISCH T, SZEIMIES R M, JORI G, et al. Antibacterial photodynamic therapy in dermatology[J]. Photochemical & Photobiological Sciences, 2004,3(10):907-917.
doi: 10.1039/b407622b pmid: 15480480
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[5] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[7] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[8] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[9] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[10] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[11] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[12] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[13] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[14] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[15] FANG Zhou, SONG Leilei, SUN Baojin, LI Wenxiao, ZHANG Chao, YAN Jun, CHEN Lei. Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants [J]. Journal of Textile Research, 2020, 41(08): 135-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!