Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (03): 15-19.doi: 10.13475/j.fzxb.20190408306

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide

MA Junzhi1,2, WANG Dong1, FU Shaohai1()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. CHTC Helon (Weifang) New Materials Co., Ltd., Weifang, Shandong 261100, China
  • Received:2019-04-30 Revised:2019-12-16 Online:2020-03-15 Published:2020-03-27
  • Contact: FU Shaohai E-mail:shaohaifu@hotmail.com

Abstract:

To improve the flame-retardant and mechanical properties of viscose fiber/bisneopentyl glycol dithiopyrophosphate (VF/DDPS), graphene oxide (GO) was incorporated into VF/DDPS matrix as synergistic flame retardant to prepare VF/DDPS/GO composite fiber through wetting spinning. Using thermogravimetry, limiting oxygen index tester, microscale combustion calorimeter and single fiber tensile tester as performance indices, the effect of GO on the thermal, flame-retardant and mechanical properties of VF/DDPS composite fiber were studied. The results show that compared to VF/DDPS, when incorporating 2.0% GO, the char residues of VF/DDPS/GO composite fiber increases from 20.0% to 29.7%, limiting oxygen index rises from 27.8% to 29.1%, peak heat release rate decreases from 141.5 to 99.4 W/g and dry/wet breaking strength increases from 2.08,0.96 cN/dtex to 2.20,1.17 cN/dtex. It is concluded that GO could enhance the graphitic degree and compactness of char residues, which strengthens the barrier action of heat and mass.

Key words: viscose fiber, graphene oxide, bisneopentyl glycol dithiopyrophosphate, flame-retardant fiber, flame-retardant agent

CLC Number: 

  • TS102.6

Tab.1

Composition of flame-retardant viscose fiber%"

样品
编号
α-纤维素
质量分数
DDPS对α-纤维素
质量分数
GO对α-纤维素
质量分数
1# 100 0 0.0
2# 100 18 0.0
3# 100 18 0.5
4# 100 18 1.0
5# 100 18 1.5
6# 100 18 2.0

Fig.1

Surface and cross section morphology of viscose fiber with 2.0% GO. (a) SEM image of fiber surface; (b) SEM image of fiber cross section; (c) Frozen section TEM image of fiber"

Fig.2

TG(a)and DTG(b)curves of viscose fibers with different components"

Fig.3

LOI values of viscose fibers with different components"

Fig.4

Heat release rate curves of viscose fibers with different components"

Fig.5

Raman spectrum of char residues of fibers"

Fig.6

SEM images of char residues of fibers"

Tab.2

Mechanical properties of viscose fibers with different components"

样品
编号
断裂强度/(cN·dtex-1) 断裂
伸长率/%
湿
1# 2.26 1.14 19.2
2# 2.08 0.96 19.4
3# 2.17 1.06 19.8
4# 2.23 1.14 18.5
5# 2.29 1.26 18.1
6# 2.20 1.17 17.6
[1] WANG Dong, MU Xiaowei, CAI Wei, et al. Constructing phosphorus, nitrogen, silicon-co-contained boron nitride nanosheets to reinforce flame retardant properties of unsaturated polyester resin[J]. Composites Part A: Applied Science and Manufacturing, 2018,109:546-554.
[2] WANG Dong, XING Weiyi, SONG Lei, et al. Space-confined growth of defect-rich molybdenum disulfide nanosheets within graphene: application in the removal of smoke particles and toxic volatiles[J]. ACS Applied Materials & Interfaces, 2016,8(50):34735-34743.
[3] WANG Dong, ZHOU Keqing, YANG Wei, et al. Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins[J]. Industrial & Engineering Chemistry Research, 2013,52(50):17882-17890.
[4] GUO Yuqiang, BAO Chenlu, SONG Lei, et al. In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior[J]. Industrial & Engineering Chemistry Research, 2011,50(13):7772-77783.
[5] GAVGANI J N, ADELNIA H, GUDARZI M M. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties[J]. Journal of Materials Science, 2014,49(1):243-254.
[6] KRISHNAMOORTHY K, VEERAPANDIAN M, YUN K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2003,53:38-49.
[7] HUANG H, REN P, CHEN J, et al. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films[J]. Journal of Membrane Science, 2012,409:156-163.
[8] 程博闻. 环境友好型阻燃纤维素纤维的阻燃性能及机理研究[J]. 天津工业大学学报, 2005,24(1):1-3.
CHENG Bowen. Study on properties and mechanism of eco-friendly fire-retardant cellulose[J]. Journal of Tiangong University, 2005,24(1):1-3.
[9] 姚莉丽. 氧化石墨烯/纤维素复合材料的制备和性能[D]. 上海:东华大学, 2014: 10-15.
YAO Lili. The preparation and properties of graphene oxide/cellulose composites[D]. Shanghai: Donghua University, 2014: 10-15.
[10] 陈南, 钟贵林, 张国峰. 石墨烯在聚合物阻燃材料中的应用及作用机理[J]. 应用化学, 2018,35(3):308-309.
CHEN Nan, ZHONG Guilin, ZHANG Guofeng. Application and interaction mechanism of graphene in polymer flame retardant materials[J]. Chinese Journal of Applied Chemistry, 2018,35(3):308-309.
[11] 李德凯, 李爱花, 刁玲博, 等. 纳米级炭黑在不同热处理温度下的结构研究[J]. 化工科技, 2014,22(4):1-4.
LI Dekai, LI Aihua, DIAO Lingbo, et al. Studies on the structure of nano-carbon black material at different heat-treatment temperatures[J]. Science & Technology in Chemical Industry, 2014,22(4):1-4.
[12] 张宪胜, 曲文广, 田明伟, 等. 石墨烯粘胶复合纤维的性能研究[J]. 棉纺织技术, 2015,43(6):15-19.
ZHANG Xiansheng, QU Wenguang, TIAN Mingwei, et al. Property study of graphene viscose composite fiber[J]. Cotton Textile Technology, 2015,43(6):15-19.
[13] 曲丽君, 田明伟, 迟淑丽, 等. 部分石墨烯复合纤维与制品的研发[J]. 纺织学报, 2016,37(10):171-173.
QU Lijun, TIAN Mingwei, CHI Shuli, et al. Research and development of graphene composite fibers and fabrics[J]. Journal of Textile Research, 2016,37(10):171-173.
[1] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[2] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[3] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[4] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[5] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[6] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[7] WANG Jiankun, JIANG Xiaodong, GUO Jing, YANG Lianhe. Research progress of functionalized graphene oxide adsorption materials [J]. Journal of Textile Research, 2020, 41(04): 167-173.
[8] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
[9] YI Ling, ZHANG He, FU Xin, LI Wen. Preparation and far-infrared emission performance of graphene based zirconium / titanium composites modified cotton fabrics [J]. Journal of Textile Research, 2020, 41(01): 102-109.
[10] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose / graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[11] MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan. Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric [J]. Journal of Textile Research, 2019, 40(11): 125-130.
[12] GAO Jing, ZHANG Jun, ZHAO Zeyang, LI Wandi, WANG Jiajun, WANG Lu. Antibacterial durability and wearability of polyester/cotton fabric modified collaboratively by graphene oxide and TiO2/SiO2 [J]. Journal of Textile Research, 2019, 40(10): 120-126.
[13] ZOU Lihua, XU Zhenzhen, SUN Yanyan, WANG Tairan, QIU Yiping. Influence of graphene oxide/polyaniline functional film on electromagnetic shielding property of cotton fabrics [J]. Journal of Textile Research, 2019, 40(08): 109-116.
[14] YIN Sili, YANG Yang, JIANG Wen, SHI Yexin, ZHOU Xiaohua, HUANG Jinhong. Preparation and optimization of carboxyl viscose fiber grafted with silkworm chrysalis peptide [J]. Journal of Textile Research, 2019, 40(08): 14-19.
[15] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
Viewed
Full text
136
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 10 0 0 126

  From Others local
  Times 6 130
  Rate 4% 96%

Abstract
378
Just accepted Online first Issue
0 0 378
  From Others local
  Times 140 238
  Rate 37% 63%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!