Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (05): 15-19.doi: 10.13475/j.fzxb.20190502306

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of polyhydroxy fatty acid ester/sodium alginate composite electrospun nanofibers

SUN Fanchen1, GUO Jing1,2, YU Yue1,2, ZHANG Sen1,2   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Liaoning Provincial Engineering Research Center of Functional Fiber and Its Composite Materials, Dalian, Liaoning 116034, China
  • Received:2019-05-13 Revised:2020-02-08 Online:2020-05-15 Published:2020-06-02

Abstract:

Aiming at the problem that polyhydroxy fatty acid ester (P(3HB-co-4HB)) and sodium alginate (SA) are difficult to co-solve under normal circumstances, a P(3HB-co-4HB)/SA nanofiber membrane were prepared using P(3HB-co-4HB) as raw material, SA as modifier, chloroform/water as solvent, alkyl glycoside as emulsifier. The intermolecular forces, thermal properties and morphology of P(3HB-co-4HB)/SA electrospinning nanofibers were characterized by infrared spectrometer, differential scanning calorimeter, and scanning electron microscope. The biocompatibility of P(3HB-co-4HB)/SA nanofibers was characterized by cytotoxicity test and cell co-culture. The results show that the formation of the P(3HB-co-4HB)/SA composite material caused changes in glass transition temperature. When the mass fraction of SA is 6%, the electrospinning nanofibers have a uniform morphology, and the average diameter of the nanofibers is 500 nm. It demonstrates a porosity of 74% and the grade 0 cytotoxicity, and the P(3HB-co-4HB))and SA has good biocompatibility.

Key words: polyhydroxy fatty acid ester, sodium alginate, nanofiber, biocompatibility, electrospinning

CLC Number: 

  • TB332

Fig.1

Experimental process and analysis of co-dissolution mechanism"

Fig.2

Infrared spectrum of SA,P(3HB-co-4HB) and P(3HB-co-4HB)/SA composites"

Fig.3

Schematic diagram of hydrogen bonding"

Fig.4

DSC curves of P (3HB-co-4HB) and P(3HB-co-4HB)/ SA"

Fig.5

SEM images of fiber membrane with different SA mass fractions(×5 000)"

Tab.1

Average diameter and porosity of fiber membrane with different SA mass fractions"

SA质量分数/% 平均直径/μm 孔隙率/%
2
4
6
8
10
12
0.47±0.02
0.49±0.02
0.50±0.01
0.52±0.03
0.37±0.11
0.42±0.20
77.0±0.14
75.8±0.09
74.0±0.07
70.5±0.12
89.0±0.23
82.0±0.21

Tab.2

Optical density values of fiber membrane with different SA mass fractions"

时间/h 空白样 不同SA质量分数时的吸光度
0% 2% 4% 6% 8% 10% 12%
12
24
36
48
72
96
0.302±0.102
0.412±0.109
0.789±0.193
1.293±0.170
1.621±0.142
2.060±0.175
0.300±0.102
0.403±0.111
0.769±0.122
1.300±0.155
1.600±0.124
2.011±0.155
0.323±0.139
0.436±0.147
0.796±0.183
1.329±0.170
1.659±0.187
2.075±0.037
0.339±0.050
0.439±0.138
1.028±0.114
1.408±0.164
1.768±0.061
2.374±0.166
0.312±0.041
0.439±0.124
0.875±0.138
1.399±0.095
1.768±0.190
2.301±0.108
0.321±0.036
0.476±0.097
0.888±0.199
1.395±0.181
1.649±0.125
2.210±0.187
0.327±0.074
0.429±0.079
0.800±0.145
1.410±0.181
1.764±0.100
2.367±0.160
0.347±0.056
0.450±0.151
0.875±0.136
1.391±0.168
1.835±0.112
2.369±0.109

Fig.6

SEM images of vitro cell culture of fiber membrane with different SA mass fractions(×500)"

[1] ALBERTI K A, NEUFEID C I, WANG J, et al. In vivo peripheral nerve repair using tendon-derived nerve guidance conduits[J]. ACS Biomaterials Science & Engineering, 2016,2(6):937-945.
pmid: 33429503
[2] QUAST M B, SVIGGUMH P, HANSONA C, et al. Infraclavicular versus axillary nerve catheters: a retrospective comparison of early catheter failure rate[J]. Journal of Clinical Anesthesia, 2018,46:79-83.
[3] CAI L, LU J, SHEEEN V, et al. Lubricated biodegradable polymer networks for regulating nerve cell behavior and fabricating nerve conduits with a compositional gradient[J]. Biomacromolecules, 2012,13(2):358-368.
pmid: 22206477
[4] PANG Y, HONG Q, ZHENG J, et al. Sensory reinnervation of muscle spindles after repair of tibial nerve defects using autogenous vein grafts[J]. Neural Regeneration Research, 2014,9(6):610-615.
pmid: 25206863
[5] PLANT C D, PLANT G W. Viral transduction of schwann cells for peripheral nerve repair[J]. Methods in Molecular Biology, 2018,1739:455-466.
[6] LEONGY H, ASM I, MOHAMEDM M, et al. Acute and repeated dose 28-day oral toxicity of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nanoparticles in Sprague-Dawley rats[J]. Regulatory Toxicology & Pharmacology, 2018,95:280-288.
pmid: 29567329
[7] HUONG K H, ELINA K, AMIRULA A. Production of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by cupriavidusmalaysiensis USMAA1020 utilising substrate with longer carbon chain[J]. International Journal of Biological Macromolecule, 2018,11(1):217-223.
[8] 刘琴, 叶川, 张俊标, 等. 同轴电纺P3HB4HB/聚乙烯醇复合支架的制备及其生物相容性[J]. 中国组织工程研究, 2018,22(2):234-240.
LIU Qin, YE Chuan, ZHANG Junbiao, et al. Preparation and biocompatibility of coaxial electrospun P3HB4HB/polyvinyl alcohol composite scaffold[J]. China Tissue Engineering Research, 2018,22(2):234-240.
[9] LI H, LU X, YANG H, et al. Non-isothermal crystallization of P(3HB-co-4HB)/PLA blends[J]. Journal of Thermal Analysis and Calorimetry, 2015,122(2):817-829.
[10] AO Z, LINGYAN C, YANG L, et al. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering[J]. Carbohydrate Polymers, 2018,199:244-255.
doi: 10.1016/j.carbpol.2018.06.093 pmid: 30143127
[11] RAGUVARAN R, MANUJA B K, CHOPRA M, et al. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells[J]. International Journal of Biological Macromolecules, 2017,96:185-191.
doi: 10.1016/j.ijbiomac.2016.12.009 pmid: 27939272
[12] 陈秀琼, 颜慧琼, 张雪琴, 等. 海藻酸钠的疏水改性对其电纺性能的影响[J]. 日用化学工业, 2017(3):28-33.
CHEN Xiuqiong, YAN Huiqiong, ZHANG Xueqin, et al. Effect of hydrophobic modification of sodium alginate on its electrospinning properties[J]. China Surfactant Detergent & Cosmetics, 2017(3):28-33.
[13] TALEBI M, ABBASIZADEH S, KESHTKARA R. Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber[J]. Process Safety and Environmental Protection, 2017,109:340-356.
[14] INAL M, ERDURAN N. Removal of various anionic dyes using sodium alginate/poly(N-vinyl-2-pyrrolidone) blend hydrogel beads[J]. Polymer Bulletin, 2015,72(7):1735-1752.
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[3] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[4] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[5] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[6] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[7] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[8] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[9] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[10] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[11] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[12] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[13] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[14] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[15] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!