Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (05): 191-196.doi: 10.13475/j.fzxb.20190504606

• Comprehensive Review • Previous Articles    

Research progress of chemical protective clothing

LÜ Kaimin, DAI Hongqin()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • Received:2019-05-21 Revised:2020-02-04 Online:2020-05-15 Published:2020-06-02
  • Contact: DAI Hongqin E-mail:daihongqin@suda.edu.cn

Abstract:

In order to understand comprehensively all performance requirements of chemical protective clothing, key factors affecting the performance were discussed. The performance differences of chemical protective clothing made from different materials were reviewed, and the development of chemical protective clothing was described. After looking at the design process of chemical protective clothing, the performance evaluation of chemical protective clothing was discussed using a five-level analysis system. By comparing the relevant standards used in China and abroad, deficiencies in domestic standards were identified, including limitation in performance testing, low systematization, and slow update. The research direction of chemical protective clothing in the future was pointed out from the problems existing in chemical protective clothing at present. Aiming at the problems identified through this review, it is proposed that future research regarding chemical protective clothing should take place concerning human, chemical protective clothing and environment, so as to improve the accurate evaluation of the comprehensive performance of chemical protective clothing.

Key words: chemical protective clothing, protective material, rotective performance, design process

CLC Number: 

  • TS941.73

Tab.1

Common materials for chemical protective clothing"

材料类型 防护性能 优点 缺点
非织造布 干微粒和轻微液体喷雾 成本低,透气性好 防护等级低
无支撑橡
胶或塑料
液体飞溅以及液体、气体渗透 防护等级高 舒适性差
微孔膜
材料
液体飞溅 舒适性好 小分子气体可通过
吸附性
材料
气体和蒸汽的渗透 防护性能较好 成本高,适用范围小
涂层织物 液体飞溅,液体、气体渗透 质量轻,防护性能好 耐久性较差
复合材料 液体飞溅,液体、气体或蒸汽渗透 防护性能好 成本高

Fig.1

Five-level analysis system for performance evaluation of protective clothing"

Tab.2

Relevant standards of chemical wear in China"

标准 分类
GB 24539—2009《防护服装 化学防护服通用技术要求》 1-ET:气密性化学防护服-ET
GB 24540—2009《防护服装 酸碱类化学品防护服》 2-ET:非气密性化学防护服-ET
GB/T 23462—2009《防护服装化学物质渗透试验方法》 3a:喷射液密性化学防护服
GB/T 24536—2009《防护服装化学防护服的选择、使用和维护》 3:液密性化学防护服 3a-ET:喷射液密性化学防护服-ET
GB/T 29511—2013《防护服装 固体微粒物化学防护服》 3b:喷溅液密性化学防护服
GA 770—2008《消防员化学防护服装》 4:颗粒物防护服
[1] 潘帅, 唐籍涛. 化学防护服材料及其应用探讨[J]. 化工管理, 2018(12):149.
PAN Shuai, TANG Jitao. Discussion on chemical protective clothing materials and their application[J]. Chemical Management, 2018(12):149.
[2] MANI K, SIVAKKUMAR V. Chemical protective clothing[J]. Man-made Textiles in India, 2011,39(6):5-10.
[3] SANER M. Multi-hazard comes of age protective clothing: Garments address flash fire, arc flash, chemical splash & poor visibility[J]. Industrial Safety & Hygiene News, 2017,51(10):1.
[4] BACH A J E, MALEY M J, MINETT G M, et al. An evaluation of personal cooling systems for reducing thermal strain whilst working in chemical/biological protective clothing[J]. Frontiers in Physiology, 2019,10:424.
pmid: 31031643
[5] EVANS K M, HARDY J K. Predicting solubility and permeation properties of organic solvents in Viton glove material using Hansen's solubility parameters[J]. Journal of Applied Polymer Science, 2004,93(6):88-98.
[6] SHAW A, PALLEN C, DURAND-RÉVILLE J, et al. Protective clothing for pesticide: development of a database to validate ISO 27065 test chemical[J]. Journal of Consumer Protection and Food Safety, 2018,13(2):103-111.
[7] SHAW, ANUGRAH, ANNA, et al. Development of a new test cell to measure cumulative permeation of water-insoluble pesticides with low vapor pressure through protective clothing and glove materials[J]. Industrial Health, 2017,55(6):555-563.
[8] CHEN T, CHEN W, WANG M. The effect of air permeability and water vapor permeability of cleanroom clothing on physiological responses and wear comfort[J]. Journal of Occupational and Environmental Hygiene, 2014,11(6):36-76.
[9] 何晴芳. 化学防护服的选择—使用—维护[J]. 劳动保护, 2015(3):97-99.
HE Qingfang. Selection, use and maintenance of chemical protective clothing[J]. Labor Protection, 2015(3):97-99.
[10] WANG Tao, WANG Liang, XIE Guanghu, et al. Experimental study on the performance of a liquid cooling garment with the application of MEPCMS[J]. Energy Conversion and Management, 2015,103(43):943-957.
[11] BORG D N, STEWART I B, COSTELLO J T. Can perceptual indices estimate physiological strain across a range of environments and metabolic workloads when wearing explosive ordnancedisposal and chemical protective clothing?[J] Physiology & Behavior, 2015,4(1):71-77.
[12] 王得印, 李小银, 黄强. 国内外隔绝式皮肤防护装备的现状及发展趋势[J]. 中国个体防护装备, 2015(6):17-22.
WANG Deyin, LI Xiaoyin, HUANG Qiang. Current situation and development trend of isolated skin protection equipment at home and abroad[J]. China Personal Protective Equipment, 2015(6):17-22.
[13] GUO Tinghui, SHANG Bofeng. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015,49(4):47-54.
[14] CADARETTE B S, CHEUVRONT S N, KOLKA M A, et al. Intermittent microclimate cooling during exercise-heat stress in US army chemical protective clothing[J]. Ergonomic, 2006,49(2):209.
[15] 李栋. 聚四氟乙烯双向拉伸膜生化隔离防护服的研究[J]. 山东化工, 2015,44(13):53-55,57.
LI Dong. Study on biochemical isolation protective clothing of polytetrafluoroethylene bidirectional tensile film[J]. Shandong Chemical Industry, 2015,44(13):53-55,57.
[16] CUI H, LI Y, ZHAO X, et al. Multilevel porous structured polyvinylidene fluoride/polyurethane fibrous membranes for ultrahigh waterproof and breathable application[J]. Composites Communications, 2017,6(12):63-67.
[17] BUI N, MESHOT E R, KIM S, et al. Ultrabreathable and protective membranes with Sub-5nm carbon nanotubepores[J]. Advanced Materials, 2016(28):871.
[18] 马倩, 王可. 化学防护服及新材料应用[J]. 纺织科技进展, 2013(4):10-12.
MA Qian, WANG Ke. Chemical protective clothing and application of new materials[J]. Progress in Textile Science and Technology, 2013(4):10-12.
[19] 朱梦玲, 李素英. 涤纶过滤材料包覆整理及性能研究[J]. 上海纺织科技, 2019,47(3):15-18.
ZHU Mengling, LI Suying. Study on coating finishing and performance of polyester filtration materials[J]. Shanghai Textile Science & Technology, 2019,47(3):15-18.
[20] DUAN X, WANG X, WANG F, et al. Synjournal of acti vated carbon fibers from cotton by microwave induc ed H3PO4 activation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,70(1):374-81.
[21] SINHA M K, DAS B R. Chitosan nanofibrous materials for chemical and biological protection[J]. Journal of Textiles and Fibrous Materials, 2018,1(1):25-37.
[22] NAGESH K, TRIPATHI, VIRENDRA V, et al. Activated carbon fabric: an adsorbent material for chemical protective clothing[J]. Defence Science Journal, 2018,68(1):83-90.
[23] HAVENITH G, DEN HARTOG E, MARTINI S. Heat stress in chemical protective clothing: porosity and vapour resistance[J]. Ergonomics, 2011,54(5):497-507.
doi: 10.1080/00140139.2011.558638 pmid: 21547794
[24] YANG Z, YANG G, YANG B. Determination of permeation resistance of chemical protective clothing to dimethyl sulfate by solution collection-gas chromatographic Method[J]. Chinese Journal of Analytical Chemistry, 2015,43(6):924-928.
[25] XU K, FENG J. Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plasticcomposites[J]. International Biodeterioration & Biodegradation, 2015,100(3):106.
[26] 田涛, 段惠莉, 吴金辉, 等. 国内外生化防护服的研究现状与发展对策[J]. 医疗卫生装备, 2008(7):29-31,45.
TIAN Tao, DUAN Huili, WU Jinhui. Research status and development countermeasure of biochemical protective clothing at home and abroad[J]. Medical and health equipment, 2008(7):29-31,45.
[27] 李俊, 管文静, 韦鸿发. 功能防护服装的性能评价及其应用与发展[J]. 中国个体防护装备, 2005(6):22-25.
LI Jun, GUAN Wenjing, WEI Hongfa. Performance evaluation and its application and development of functional protective clothing[J]. China Personal Protective Equipment, 2005 (6):22-25.
[28] 张兰, 王灵杰, 崔灵燕. 国内外透气式防毒服发展概述[J]. 山东纺织科技, 2019,60(6):54-56.
ZHANG Lan, WANG Lingjie, CUI Lingyan. Overview of development of ventilated antivirus clothing at home and abroad[J]. Shandong Textile Science Technology, 2019,60(6):54-56.
[29] 杨小兵. 化学防护服国际标准最新动态对我国GB 24539-2009修订的影响[J]. 纺织学报, 2019,40(6):165-170.
YANG Xiaobing. The influence of the latest development of international standards for chemical protective clothing on the revision of GB 24539-2009 in China[J]. Journal of Textile Research, 2019,40(6):165-170.
[30] 袁凤. 出汗暖体假人:新的NIOSH测试工具[J]. 中国个体防护装备, 2013(3):50.
YUAN Feng. Sweating and warm body dummy:new NIOSH test tool[J]. China Personal Protective Equipment, 2013(3):50.
[31] GEORGE Havenith, RONALD Heus. A test battery Related to ergonomics of protelctive clothing[J]. Applied Ergonomics, 2004(35):3-20.
[32] GU J, GU H, CAO J, et al. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application[J]. Applied Surface Science, 2018,439:589-597.
[33] TAO Wang, LIANG Wang, LI Zhanbai, et al. Experimental study on the performance of a liquid cooling garment withthe application of MEPCMS[J]. Energy Conversion and Management, 2015,100:943-957.
[34] SLABOTINSK J, BERNATÍKOVÁ Š. Reaction of the female body to stress in a chemical protective clothing[J]. Safety Engineering Series, 2016,11(2):15-21.
[35] JOSEPH J, SARGENT J R. Characterization ofaselectively permable coating to a woven fab ric[J]. Abstracts International, 2011(5):65-87.
[36] GORJI M, KARIMI M, RAHIMI LARKI M, et al. Theoretical modeling of thermal stress imposed by selective permeation membranes reinforced with graphene oxide[J]. Journal of Applied Polymer Science. 2017,134(17):44-52.
[37] HAVENITH G, DEN Hartog E, Martini S. Heat stress in chemical protective clothing: porosity and vapour resistance[J]. Ergonomics, 2011,54(5):497-507.
doi: 10.1080/00140139.2011.558638 pmid: 21547794
[38] HANEEN Hamdan, NESREEN Ghaddar, DJAMEL Ouahrani, et al. PCM cooling vest for improving thermal comfort in hot environment[J]. International Journal of Thermal Sciences, 2016,102:154-167.
[39] ERIC VAN WELY. Current global standards for chemical protective clothing: how to choose the right protection for the right job?[J]. Industrial Health 2017,55:485-499.
doi: 10.2486/indhealth.2017-0124 pmid: 29046493
[1] WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58.
[2] ZHANG Tingting, ZHANG Jie, TIAN Xinyu, CHEN Zhen, REN Wei. Recent progress in gas-tight chemical protective clothing [J]. Journal of Textile Research, 2020, 41(12): 174-181.
[3] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[4] ZHAI Li'na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[5] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[6] WANG Yaxian, LI Yanmei. Research progress in impact-energy-absorbing cushioning garments [J]. Journal of Textile Research, 2020, 41(05): 184-190.
[7] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[8] LI Danyang, WANG Rui, LIU Xing, ZHANG Shujie, XIA Zhaopeng, YAN Ruosi, DAI Erqing. Effect of shear thickening fluid on quasi-static stab resistance of aramid-based soft armor materials [J]. Journal of Textile Research, 2020, 41(03): 106-112.
[9] QIU Hao, SU Yun, WANG Yunyi. Influence of steam exposure condition on thermal protective performance of fabrics [J]. Journal of Textile Research, 2020, 41(01): 118-123.
[10] HU Ziting, ZHENG Xiaohui, FENG Mingming, WANG Yingjian, LIU Li, DING Songtao. Influence of air gap on thermal and moisture properties of permeable protective clothing [J]. Journal of Textile Research, 2019, 40(11): 145-150.
[11] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[12] CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric [J]. Journal of Textile Research, 2019, 40(10): 141-146.
[13] LIU Qixia, ZHOU Yiru, YANG Zhilian, WANG Mei, JI Tao. Preparation and properties of spherical activated carbon-based composite fabric for permeable chemical protective clothing [J]. Journal of Textile Research, 2019, 40(06): 182-188.
[14] YANG Xiaobing, YANG Guang, TAN Wenli, GUO Jingwen, DING Songtao, ZHONG Jinyi. Impact of latest development trend of international standardization on GB 24539—2009 for chemical protective clothing [J]. Journal of Textile Research, 2019, 40(06): 165-170.
[15] SU Yun, YANG Jie, LI Rui, SONG Guowen, LI Jun, ZHANG Xianghui. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation [J]. Journal of Textile Research, 2019, 40(02): 147-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!