Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (06): 118-124.doi: 10.13475/j.fzxb.20190603707

• Apparel Engineering • Previous Articles     Next Articles

Thermal function effectiveness and location of heating device in cold protective clothing

WU Daiwei1, LI Hongyan2, DAI Yanyang1, SU Yun1,3, WANG Yunyi1,3()   

  1. 1. Fashion and Art Design Institute, Donghua University, Shanghai 200051, China
    2. Electric Power Research Institute, State Grid Jilin Electric Power Co., Ltd., Changchun, Jilin 130021, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education,Donghua University, Shanghai 200051, China
  • Received:2019-06-17 Revised:2020-03-04 Online:2020-06-15 Published:2020-06-28
  • Contact: WANG Yunyi E-mail:wangyunyi@dhu.edu.cn

Abstract:

In current research on using heating device in cold protective clothing, it is found that there was a lack of overall design on heating position and quantitative analysis on heating temperature range. In order to obtain the optimal combination of heating device and cold protective clothing, a commercial clothing heating device was employed to meet human thermal comfort and improve heating efficiency. Various combination experiments were carried out at -11.8 ℃ through a thermal manikin test (the manikin was standing still). The results reveal that five body zones including upper chest, shoulder, abdomen, forearm and calf are the suitable heating places. It is recommended to heat up outside the lining of clothing liner, and the suitable heating temperature range for each location is given as 37-40 ℃ for abdomen, 40-44 ℃ for shoulder, 44-49 ℃ for upper chest, over 49 ℃ for forearm and calf. Better heating effect is obtained with higher clothing thermal resistance. The results provid data foundations for the design and development of thermal functions for heating clothing.

Key words: low temperature environment, heating device, cold protective clothing, combination design

CLC Number: 

  • TS941.73

Tab.1

Experimental sample composition"

样本
编号
隔热值/
clo
服装
构成
用途 名称 纤维成分
A 4.24 外套 面料 防静电布 涤/棉
里料 涂银布 涤纶
内胆 面料 春亚纺 涤纶
絮填料 新雪丽棉 涤纶/
聚丙烯
里料 涂银布 涤纶
B 3.18 外套 面料 - 涤纶
絮填料 - 涤纶
里料 涂银布 涤纶

Fig.1

A brief schematic diagram of heating device"

Tab.2

Temperature set values and corresponding calibration temperatures of heating device℃"

温度设定值 53 48 43 38 33 30
校准温度值 49 44 40 37 32 31

Fig.2

Surface temperature changes of different zones of manikin without heating"

Fig.3

Surface temperature changes of different zones with different location of heating device in layers of sample A (A1:inside lining of clothing liner; A2:outside lining of clothing liner)"

Tab.3

Temperature set values of heating device at different time periods"

时间段/min 温度设定值/℃
0~53 53
53~63 48
63~73 43
73~93 38
93~110 停止加热

Fig.4

Effect of different temperature set values of heating device on surface temperature of upper limb zone"

Fig.5

Effect of different temperature set values of heating device on surface temperature of torso zone"

Fig.6

Effect of different temperature set values of heating device on surface temperature of lower limb zone"

Tab.4

Four-level heating temperature recommendation℃"

部位 档位 加热温度范围
设定值 校准值
腹部 第一级 38~43 37~40
肩部 第二级 43~48 40~44
前胸 第三级 48~53 44~49
小腿、前臂 第四级 ≥53 ≥49

Fig.7

Surface temperature changes of upper body zones of manikin wearing sample A (a) and B (b) with and without heating"

Tab.5

Comparison of heating effects of sample A and B"

区段
名称
0~30 min表面
温度变化
速度/(℃·h-1)
加热30 min时
的表面温
度值/℃
较不加热情况
下表面温度的
提高幅度/%
A B A B A B
肩部 -0.84 -3.38 28.60 26.78 8.54 26.8
后中 2.86 -0.18 34.54 32.61 24.90 35.5
腰部 -1.94 -2.02 31.87 29.96 20.60 22.1
下背 0.72 -2.60 33.33 31.29 20.10 25.0
[1] YOO S, KIM E. Wear trial assessment of layer structure effects on vapor permeability and condensation in a cold weather clothing ensemble[J]. Textile Research Journal, 2012,82(11):1079-1091.
[2] WANG Faming, GAO Chuansi, KUKLANE Kalev, et al. A review of technology of personal heating gar-ments[J]. International Journal of Occupational Safety and Ergonomics, 2010,16(3):387-404.
doi: 10.1080/10803548.2010.11076854 pmid: 20828494
[3] WANG S X, LI Y, HU J Y, et al. Effect of phase-change material on energy consumption of intelligent thermal-protective clothing[J]. Polymer Testing, 2006,25(5):580-587.
[4] 任萍, 刘静. 可加热服装技术的研究进展[J]. 纺织科学研究, 2008,3:12-18.
REN Ping, LIU Jing. Research progress in heating garment technology[J]. Textile Science Research, 2008,3:12-18.
[5] PENG Linghui, SU Bin, YU Aibing, et al. Review of clothing for thermal management with advanced mate-rials[J]. Cellulose, 2019,26(11):6415-6448.
[6] 李佳怡, 卢业虎, 叶鑫, 等. 智能发热户外防寒服装研制与性能评价[J]. 东华大学学报(自然科学版), 2018,44(1):80-86.
LI Jiayi, LU Yehu, YE Xin, et al. Performance evaluation of outdoor cold protective clothing with smart heating function[J]. Journal of Donghua Univer-sity (Natural Science), 2018,44(1):80-86.
[7] 沈雷, 任祥放, 刘皆希, 等. 保暖充电老年服装的设计与开发[J]. 纺织学报, 2017,38(4):103-108.
SHEN Lei, REN Xiangfang, LIU Jiexi, et al. Design and development of warm clothing for the elderly[J]. Journal of Textile Research, 2017,38(4):103-108.
[8] 许静娴, 刘莉, 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016,37(12):24-28.
XU Jingxian, LIU Li, LI Jun. Development and performance evaluation of electrically-heated textile based on silver-coated yarn[J]. Journal of Textile Research, 2016,37(12):24-28.
[9] 刘皓, 李津, 陈莉, 等. 针织加热织物的热电性能[J]. 纺织学报, 2015,36(1):50-54.
LIU Hao, LI Jin, CHEN Li. Thermal-electrical properties of knitted heating fabrics[J]. Journal of Textile Research, 2015,36(1):50-54.
[10] PARK H, HWANG S K, LEE J Y, et al. Impact of electrical heating on effective thermal insulation of a multi-layered winter clothing system for optimal heating efficiency[J]. International Journal of Clothing Science and Technology, 2016,28(2):254-264.
[11] 田苗, 张向辉, 沈翀翌. 电加热服装的研究进展及热舒适性能评价[J]. 上海纺织科技, 2018,46(8):20-24.
TIAN Miao, ZHANG Xianghui, SHEN Chongyi. Research progress of electrically heated garment and evaluation on its thermal comfort performance[J]. Shanghai Textile Science & Technology, 2018,46(8):20-24.
[12] WANG F M, LEE H. Evaluation of an electrically heated vest (EHV) using a thermal manikin in cold environments[J]. The Annals of Occupational Hygiene, 2010,54(1):117-124.
pmid: 19901001
[1] SU Wenzhen, LU Yehu, WANG Fangming, SONG Wenfang. Development of novel air inflatable jacket and thermal insulating property evaluation [J]. Journal of Textile Research, 2020, 41(05): 140-145.
[2] ZHOU Jiu, LU Shuangyi. Design principal and practice of layered-combination mode for digital jacquard fabric [J]. Journal of Textile Research, 2020, 41(02): 58-63.
[3] SU Wenzhen, SONG Wenfang, LU Yehu, YANG Xiuyue. Thermal insulation of air inflatable cold protective clothing [J]. Journal of Textile Research, 2020, 41(02): 115-118.
[4] . Layer-exchanging design and practice of double-face two-layer jacquard fabric [J]. Journal of Textile Research, 2018, 39(12): 41-46.
[5] . Design Principle and method of compound jacquard half-backed structure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 40-45.
[6] . Art of combination design about mechanical and manual pleats [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 115-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!