Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (08): 55-62.doi: 10.13475/j.fzxb.20190700608

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Influence of waterborne polyacrylate on printing effect of coated label fabrics

ZHU Qing1,2, XU Dandan1, PAN Yuange1, WANG Chenglong1,2, ZHENG Jinhuan1,3()   

  1. 1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    2. Zhejiang Key Laboratory of Clean Dyeing and Finishing Technology, Shaoxing,Zhejiang 312000, China
    3. Engineering Research Center for Eco-Dyeing and Finishing of Textiles,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2019-07-01 Revised:2020-03-23 Online:2020-08-15 Published:2020-08-21
  • Contact: ZHENG Jinhuan E-mail:hzzjh1968@163.com

Abstract:

In order to solve the problems of slow drying and low print resolution in coated label fabrics, this paper reported the influence of coating agents with different modified structures on the printing effect of coated label fabrics by testing the particle size of coating agent, rheological properties of coating slurry, weight loss rate, contact angle and printing resolution of coated label fabrics. The correlation between the coating surface structure and printing effect was established. The findings indicate that when the coated label fabrics have porosity higher than 0.509% for the pore areas ranging from 0.001 to 0.010 μm2, the printed pattern tends to show bad coverage, and the phenomenon is exacerbated with the increase of porosity. When the porosity ranging from 0.1 to 1 μm2 is higher than 2.656%, ink bleeding occurs. The micropore size is mostly distributed around 1 μm2 in the interval of 1-100 μm2. If the porosity in this interval is too high(more than 9%), there are more large pores on the surface of the coated label fabric, resulting in poor continuity of the printed patterns.

Key words: label fabric, waterborne polyacrylate, ink absorption and quick drying performance, print resolution, label printing

CLC Number: 

  • TS195.5

Fig.1

Particle size distribution curve of coating agent"

Tab.1

Particle size distribution data of coating agent"

涂层剂名称 平均粒径/nm 方差/nm2
改性纯丙乳液 95 0.247
改性苯丙乳液 95 0.247
自交联醋丙乳液 133 5.830
环氧改性自交联丙烯酸乳液 104 0.459

Fig.2

Effect of coating agent on rheological properties of polyacrylate coating slurry. (a) Shear force-shear rate curves of coating slurry; (b) Viscosity-shear rate curves of coating slurry"

Fig.3

SEM images of coated label fabrics made from different polyacrylate coating slurry(×2 000). (a) Uncoated finishes; (b) Pure acrylic; (c) Styrene-acrylic; (d)Vinegar-acrylic; (e) Epoxy modified acrylic"

Fig.4

Relationship between distance and profile gray value of coated label fabrics made of different polyacrylate coating slurry. (a) Pure acrylic; (b) Styrene-acrylic; (c)Vinegar-acrylic; (d) Epoxy modified acrylic"

Fig.5

Titration point of coated label fabric. (a) Pure acrylic; (b) Styrene-acrylic; (c)Vinegar-acrylic; (d) Epoxy modified acrylic"

Fig.6

Printed lines of coated label fabrics made from different polyacrylate coating clurry. (a) Pure acrylic; (b) Styrene-acrylic; (c)Vinegar-acrylic; (d) Epoxy modified acrylic"

Tab.2

Line width data for coated trademark fabrics ade from different polyacrylate coating clurry"

涂层浆原料 平均宽度/mm 方差/nm2
改性纯丙乳液 1.49 0.000 25
改性苯丙乳液 1.49 0.000 22
自交联醋丙乳液 1.45 0.000 42
环氧改性自交联丙烯酸乳液 1.43 0.000 31

Fig.7

Printed text image of coated label fabrics made from different polyacrylate coating slurry(×100). (a) Pure acrylic; (b) Styrene-acrylic; (c)Vinegar-acrylic; (d) Epoxy modified acrylic"

Tab.3

Pore distribution of coated label fabric made from different polyacrylate coating slurry"

涂层浆原料 0.001~0.010 μm2 0.01~0.10 μm2 0.1~1.0 μm2 1~100 μm2
孔数 平均孔面
积/μm2
孔隙
率/%
孔数 平均孔面
积/μm2
孔隙
率/%
孔数 平均孔面
积/μm2
孔隙
率/%
孔数 平均孔面
积/μm2
孔隙
率/%
改性纯丙乳液 20 648 0.005 0.602 5 345 0.029 0.882 1 542 0.308 2.656 401 3.950 10.108
改性苯丙乳液 17 443 0.005 0.509 6 124 0.028 0.970 1 246 0.320 2.236 430 3.783 9.117
自交联醋丙乳液 21 041 0.005 0.615 5 825 0.029 0.960 1 782 0.328 3.280 515 4.666 13.500
环氧改性自交联
丙烯酸乳液
30 347 0.005 0.889 7 255 0.026 1.042 1 650 0.335 3.101 531 4.398 13.100

Fig.8

Effect of coating agent on surface contact angle of lable fabric. (a) Pure acrylic;(b) Styrene-acrylic;(c)Vinegar-acrylic;(d) Epoxy modified acrylic"

Fig.9

Relationship curves between weight loss rate of waterborne ink and time"

Tab.4

Effect of coating agent on color fastness to rubbing of printed trademark fabrics 级"

涂层浆原料 耐干摩擦色牢度 耐湿摩擦色牢度
改性纯丙乳液 3 2~3
改性苯丙乳液 4 3~4
自交联醋丙乳液 3 2~3
环氧改性自交联丙烯酸乳液 2 2
[1] 张岩, 陈杰, 曹云峰. 喷墨打印纸涂层中胶黏剂配比对油墨扩散渗透的影响[J]. 中国造纸学报, 2015,30(1):32-35.
ZHANG Yan, CHEN Jie, CAO Yunfeng. Effect of adhesive ratio on diffusion and penetration of inkjet printing paper coatings[J]. China Journal of Paper, 2015,30(1):32-35.
[2] 韦莹. 浅谈高速喷墨印刷技术发展及应用现状[J]. 数字印刷, 2016(4):36-38.
WEI Ying. Discussion on the development and application status of high speed inkjet printing technology[J]. Digital Printing, 2016(4):36-38.
[3] 刘青松. 阳离子改性介孔二氧化硅吸墨层的制备及其喷墨打印性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014: 14-16.
LIU Qingsong. Preparation of cation-modified mesoporous silica ink-receiving layer and its inkjet printing performance[D]. Harbin: Harbin Institute of Technology, 2014: 14-16.
[4] 李涛, 杜奕铃, 李红艳, 等. 无机填充剂对聚酰胺湿法涂层商标织物性能的影响[J]. 纺织学报, 2017,38(3):114-121.
LI Tao, DU Yiling, LI Hongyan, et al. Effect of inorganic fillers on properties of polyamide wet coated trademark fabrics[J]. Journal of Textile Research, 2017,38(3):114-121.
[5] TIAN Y, JIN X Y, JIN N G, et al. Research on the microstructure formation of polyacrylate latex modified mortars[J]. Construction & Building Materials, 2013,47:1381-1394.
[6] 霍彦东, 段玉丰, 张松, 等. 水性油墨用丙烯酸酯树脂的改性研究进展[J]. 信息记录材料, 2014,15(3):49-55.
HUO Yandong, DUAN Yufeng, ZHANG Song, et al. Research progress in modification of acrylate resin for waterborne ink[J]. Information Recording Materials, 2014,15(3):49-55.
[7] 刘日平, 李明, 周向东. 吸墨快干聚丙烯酸酯涂层剂的合成与应用[J]. 印染, 2016,42(23):5-9.
LIU Riping, LI Ming, ZHOU Xiangdong. Synjournal and application of ink absorbing and fast-drying polyacrylate coating agent[J]. China Dyeing & Finishing, 2016,42(23):5-9.
[8] 郭丽娜. 彩喷纸涂层结构与打印性能关系的研究[D]. 天津:天津科技大学, 2010: 22-24.
GUO Lina. Research on the relationship between color spray paper coating structure and printing perfor-mance[D]. Tianjin: Tianjin University of Science and Technology, 2010: 22-24.
[9] 叶思佳. 高岭土改性及其在聚酰胺湿法涂层中的应用研究[D]. 杭州:浙江理工大学, 2018: 13-14.
YE Sijia. Kaolin modification and its application in polyamide wet coating[D]. Hangzhou: Zhejiang Sci-Tech University, 2018: 13-14.
[10] WU S Q, WANG J W, SHAO J, et al. Building a novel chemically modified polyaniline/thermally reduced graphene oxide hybrid through π-π interaction for fabricating acrylic resin elastomer based composites with enhanced dielectric property[J]. ACS Applied Materials & Interfaces, 2017,9(34):28887-28901.
doi: 10.1021/acsami.7b07785 pmid: 28776970
[11] KROTIL H, STIFTER T, WASCHIPKY H, et al. Pulsed force mode: a new method for the investigation of surface properties[J]. Surface & Interface Analysis, 2015,27(5):336-340.
[12] 刘国栋. 造纸涂层材料自渗吸行为机制及理论建模研究[D]. 西安:陕西科技大学, 2014: 108-110.
LIU Guodong. Self-osmotic behavior mechanism and theoretical modeling of paper coating materials[D]. Xi'an: Shaanxi University of Science and Technology, 2014: 108-110.
[13] 姚志明. 纸张表面孔隙分析方法的建立及应用[D]. 广州:华南理工大学, 2016: 6-8.
YAO Zhiming. Establishment and application of paper surface pore analysis method[D]. Guangzhou: South China University of Technology, 2016: 6-8.
[14] 李莹. 涂布纸油墨渗透的表征及影响油墨渗透因素的研究[D]. 广州:华南理工大学, 2011: 11-14.
LI Ying. Characterization of infiltration of coated paper ink and study on factors affecting ink penetration[D]. Guangzhou: South China University of Technology, 2011: 11-14.
[1] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[2] YUAN Jiugang, JI Ji, XUE Qi, JIANG Zhe, FAN Xuerong, GAO Weidong. Dissolution and regeneration of wool keratin in choline thioglycolate [J]. Journal of Textile Research, 2021, 42(01): 35-39.
[3] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[4] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[5] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[6] CHENG Shijie, WANG Chenyang, ZHANG Hongwei, ZUO Danying. Effect of boron nitrogen doped carbon dots on ultraviolet-protection of cotton fabrics [J]. Journal of Textile Research, 2020, 41(06): 93-98.
[7] TAN Lin, SHI Yidong, ZHOU Wenya. Study on enhancement of hydrophobicity treatment of cotton fabrics using silica sol [J]. Journal of Textile Research, 2020, 41(04): 106-111.
[8] ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187.
[9] SUN Yufa, ZHOU Xiangdong. Synthesis and characterization of novel phosphorous and nitrogen-containing flame retardant for cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 79-85.
[10] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[11] WANG Hao, DU Zhaofang, XU Yunhui. Preparation of oxidized chitosan/sericin composite and its functional finish on cotton fabrics [J]. Journal of Textile Research, 2019, 40(11): 119-124.
[12] HE Qingqing, XU Hong, MAO Zhiping, ZHANG Linping, ZHONG Yi, LÜ Jingchun. Preparation of high-electrical conductivity polypyrrole-coated fabrics [J]. Journal of Textile Research, 2019, 40(10): 113-119.
[13] WEI Lingli, ZOU Qinshan, WANG Lu, LUO Jing, XIA Xin. Preparation of fluorine-free water repellent treated wool/cashmere fabrics [J]. Journal of Textile Research, 2019, 40(09): 102-107.
[14] ZHANG Fan, ZHANG Ru, ZHOU Wenchang, ZHOU Hui, WANG Nanfang. Low-temperature bleaching of cotton knitted fabrics using hydrogen peroxide in presence of copper complex catalysts [J]. Journal of Textile Research, 2019, 40(08): 101-108.
[15] WANG Wencong, FAN Jingjing, DING Chao, WANG Hongbo. Preparation and properties of multifunctional composite conductive wool fabric [J]. Journal of Textile Research, 2019, 40(08): 117-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!