Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (09): 81-87.doi: 10.13475/j.fzxb.20190704007

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of microfiber synthetic leather base

DUO Yongchao1, QIAN Xiaoming1(), ZHAO Baobao2, QIAN Yao3, ZOU Zhiwei1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Textile and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    3. School of Textile Materials and Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
  • Received:2019-07-15 Revised:2020-05-27 Online:2020-09-15 Published:2020-09-25
  • Contact: QIAN Xiaoming E-mail:qxm@tiangong.edu.cn

Abstract:

In order to further improve the water-vapor transmission rate and softness of polyester/polyamide 6 (PET/PA6) hollow microfiber synthetic leather base, polyacrylonitrile (PAN) nanofibers were mixed with PET/PA6 microfibers to prepare PAN-PET/PA6 micro/nano microfiber synthetic leather base by hydro-entanglement and alkali treatment. The effects of PAN nanofiber mass fraction on the air permeability, water vapor permeability, moisture absorption, softness and mechanical properties of leather base were analyzed. The results show that the water vapor permeability, moisture absorption, softness and tear strength were improved with the content of PAN nanofibers increase for the same areal density, but the air permeability and breaking strength were decreased. When the content of nanofibers was 20%, the water vapor permeability of the base was increased by 15.19%, the moisture absorption 23.53%, and the softness was increased by 38.17%. After alkali treatment, the hydrophilicity of base was obviously improved. The water vapor permeability was increased by 23.81%, the moisture absorption was increased by 42.26%, and the softness was increased by 23.20%.

Key words: polyester/polyamide 6 microfiber, polyacrylonitrile nanofiber, spunlace, synthetic leather base, fiber modification, moisture permeability

CLC Number: 

  • TS174.8

Fig.1

Flow chart of preparation process"

Fig.2

SEM images of natural leather(a) and PAN nanofibers (b)"

Fig.3

SEM images of PAN-PET/PA6 synthetic leather base cross section with different PAN mass fractions. (a) Surface of M1; (b) Cross section of M1; (c) Surface of M3; (d) Cross section of M3"

Fig.4

FT-IR spectra of PAN-PET/PA6 synthetic leather base"

Fig.5

Effect of PAN nanofiber mass fraction on air permeability of PAN-PET/PA6 synthetic leather base"

Fig.6

Water contact angle test result of PAN-PET/PA6 synthetic leather base before(a)and after(b)alkali treatment"

Fig.7

Effect of PAN nanofiber mass fraction on water-vapor transmission(a)and moistue absorption(b) of PAN-PET/PA6 synthetic leather base"

Fig.8

Effect of PAN nanofiber mass fraction on softness of microfiber synthetic leather base"

Tab.1

Mechanical properties of PAN-PET/PA6 synthetic leather base"

试样
编号
断裂强力/N 断裂伸长率/% 撕裂强力/N
碱处理前 碱处理后 碱处理前 碱处理后 碱处理前 碱处理后
M1 162.38 124.80 124.09 91.13 8.52 8.12
M2 153.46 117.15 110.26 84.66 9.62 8.56
M3 145.25 112.71 104.59 80.63 11.79 9.25
M4 137.15 106.67 97.27 78.81 12.99 10.04
M5 122.75 103.78 93.92 69.69 14.34 10.11
[1] 任龙芳, 赵国徽, 强涛涛, 等. 超细纤维合成革仿天然皮革研究进展[J]. 皮革科学与工程, 2012, 22(1):36-40.
REN Longfang, ZHAO Guohui, QIANG Taotao, et al. Advances in the microfiber synthetic materials emulating natural leather[J]. Leather Science and Engineering, 2012, 22(1):36-40.
[2] 宋兵, 钱晓明, 严姣. 超细纤维合成革透湿透气性能的研究进展[J]. 合成纤维工业, 2014, 37(4):50-53.
SONG Bing, QIAN Xiaoming, YAN Jiao. Research progress in water vapor permeability of microfiber synthetic leather[J]. China Synthetic Fiber Industry, 2014, 37(4):50-53.
[3] 马兴元, 王俊君, 易宗俊, 等. 提高超细纤维合成革透水汽性能的研究[J]. 皮革科学与工程, 2007, 17(3):43-46.
MA Xingyuan, WANG Junjun, YI Zongjun, et al. Study on improving the water vapor permeability of hyperfine fibre synthetic leather[J]. Leather Science and Engineering, 2007, 17(3):43-46.
[4] ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of split microfiber synthetic leather[J]. Journal of Engineered Fibers and Fabrics, 2018, 13(2):15-21.
[5] 任龙芳, 王娜, 陈婷, 等. PAMAM-COOH的合成、表征及对超细纤维合成革卫生性能的影响[J]. 功能材料, 2014, 45(13):25-29.
REN Longfang, WANG Na, CHEN Ting, et al. Synjournal and characterization of PAMAM-COOH and its effect on sanitary properties of microfiber synthetic leather[J]. Functional Materials, 2014, 45(13):25-29.
[6] KIUMARSI A, PARVINZADEH M. Enzymatic hydrolysis of nylon 6 fiber using lipolytic enzyme[J]. Journal of Applied Polymer Science, 2010, 116(6):3140-3147.
[7] QIANG Taotao, WANG Xuechuan, REN Longfang, et al. Study on the improvement of water vapor permeability and moisture absorption of microfiber synthetic leather base by collagen[J]. Textile Research Journal, 2015, 85(13):1394-1403.
doi: 10.1177/0040517514545262
[8] 马兴元, 吕凌云, 李晓. 聚酰胺超细纤维合成革基布的酶法改性研究[J]. 中国皮革, 2010, 39(5):36-39.
MA Xingyuan, LV Lingyun, LI Xiao. Enzyme hydrolyzation of polyamide hyperfine fiber synthetic leather base[J]. China Leather, 2010, 39(5):36-39.
[9] 王学川, 赵佩, 任龙芳, 等. 噁唑烷/胶原蛋白提高超细纤维合成革透水汽性的研究[J]. 中国皮革, 2017(2):87-93.
WANG Xuechuan, ZHAO Pei, REN Longfang, et al. Study on water vapour permeability improvment of superfiber synthetic leather with oxazolidine/collagen[J]. China Leather, 2017(2):87-93.
[10] 陈丽. 环糊精改性聚酰胺纤维的机械和物理化学性能[J]. 现代丝绸科学与技术, 2008, 23(3):9-11.
CHEN Li. Mechanical and physicochemical properties of cyclodextrin modified polyamide fibers[J]. Modern Silk Science and Technology, 2008, 23(3):9-11.
[11] DURANY A, ANANTHARAMAIAH N, POURDEYHIMI B. High surface area nonwovens via fibrillating spunbonded nonwovens comprising islands-in-the-sea bicomponent filaments: structure-process-property relationships[J]. Journal of Materials Science, 2009, 44(21):5926-5934.
doi: 10.1007/s10853-009-3841-9
[12] HOLLOWELL K B, ANANTHARAMAIAH N, POURDEYHIMI B. Hybrid mixed media nonwovens composed of macrofibers and microfibers: part I: three-layer segmented pie configuration[J]. Journal of The Textile Institute, 2013, 104(9):972-979.
doi: 10.1080/00405000.2013.767430
[13] 赵宝宝, 钱幺, 钱晓明, 等. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(5):56-61.
ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of bicomponent spunbond-spunlace nonwoven materials with gradient structure[J]. Journal of Textile Research, 2018, 39(5):56-61.
[14] 刘凡, 钱晓明, 赵宝宝, 等. 柔软处理对涤/锦纶6中空桔瓣型超细纤维非织造布性能的影[J]. 纺织学报, 2018, 39(3):114-119.
LIU Fan, QIAN Xiaoming, ZHAO Baobao, et al. Influence of softening treatment on properties of polyester/polyamide 6 hollow segmented-pie ultrafine fiber nonwovens[J]. Journal of Textile Research, 2018, 39(3):114-119.
[15] BUEHLER M J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33):12285-12290.
doi: 10.1073/pnas.0603216103 pmid: 16895989
[16] GAUTIERI A, REDAELLI A, BUEHLER M J, et al. Age and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in advanced glycation end-products[J]. Matrix Biology, 2014, 34:89-95.
doi: 10.1016/j.matbio.2013.09.004 pmid: 24060753
[17] 孙静. 红外光谱技术在纺织品检测中的应用[J]. 纺织检测与标准, 2019, 5(6):5-7.
SUN Jing. Application of infrared spectrometer in textile testing[J]. Textile Testing and Standard, 2019, 5(6):5-7.
[18] 王钦, 封严, 赵东. 聚酯/锦纶6双组分纺粘水刺非织造布的光接枝亲水亲油改性[J]. 纺织学报, 2015, 36(11):99-102.
WANG Qin, FENG Yan, ZHAO Dong. Hydrophilic-lipophilic modification of PET/PA6 bicomponent spunbonded spunlaced nonwovens by ultraviolet grafting[J]. Journal of Textile Research, 2015, 36(11):99-102.
[19] 刁彩虹, 肖长发, 马艳霞. 高吸湿性聚丙烯腈纤维的制备[J]. 纺织学报, 2010, 31(9):1-4.
DIAO Caihong, XIAO Changfa, MA Yanxia. Preparation of high moisture absorbent polyacrylonitrile fibers[J]. Journal of Textile Research, 2010, 31(9):114-119.
[1] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[2] LÜ Hanming, WANG Xiangyu, LIU Fengkun. Estimating water content of acetate fiber spunlaced nonwovens with dielectric spectroscopy [J]. Journal of Textile Research, 2020, 41(06): 55-60.
[3] QI Guorui, KE Qinfei, LI Zu'an, HUANG Zujian, JIN Xiangyu, HUANG Chen. Single-guide water non-fluorinated finishing of cotton spunlace non-woven materials [J]. Journal of Textile Research, 2019, 40(07): 119-127.
[4] ZHANG Wenjuan, JI Feng, ZHANG Ruiyun, ZHAO Xiaojie, WANG Ni, WANG Junli, ZHANG Jianxiang. Study on relationship between capillary characteristics and moisture permeability of wool fabrics [J]. Journal of Textile Research, 2019, 40(01): 67-72.
[5] . Cold plasma treatment and aging properties of aramid fiber [J]. Journal of Textile Research, 2018, 39(11): 73-78.
[6] . Preparation and properties of electrospun polyacrylonitrile nanofiber coated window screen [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 14-18.
[7] . Influence of degreasing and bleaching process on performance of pure cotton spunlaced nonwovens used for medical treatment and hygiene [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 88-93.
[8] . Properties of crosslinking agent modified microfiber synthetic leather base [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 101-108.
[9] . Gray clustering analysis on thermal-moisture comfort of phenolic fiber fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 29-32.
[10] . Measurement and analysis on thermal properties of men’s knitted underwear [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 92-96.
[11] . Filtration and mechanical performance of orange petal shape bicomponent spunbond-spunlace nonwoven materials [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 16-20.
[12] . Elastic recovery analysis of nonwoven fabric with mesh structure [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 22-26.
[13] llq. Analyzing properties of insulating layer of spunlaced nonwovens of aramid and polysulfonamide fiber at different blended ratios [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 46-50.
[14] . Property test and analysis of chitin fiber/long-staple cotton fabrics of defferent blending ratios [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(1): 25-30.
[15] CHEN Li-Hua. Properties and development trends of the different kinds of waterproof and moisture permeable fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(7): 149-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!